Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{10}+\sqrt{2}+\sqrt{3}\right)\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{10}+\sqrt{2}+\sqrt{3}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\left(\sqrt{10}+\sqrt{2}+\sqrt{3}\right)\sqrt{5}}{5}
The square of \sqrt{5} is 5.
\frac{\sqrt{10}\sqrt{5}+\sqrt{2}\sqrt{5}+\sqrt{3}\sqrt{5}}{5}
Use the distributive property to multiply \sqrt{10}+\sqrt{2}+\sqrt{3} by \sqrt{5}.
\frac{\sqrt{5}\sqrt{2}\sqrt{5}+\sqrt{2}\sqrt{5}+\sqrt{3}\sqrt{5}}{5}
Factor 10=5\times 2. Rewrite the square root of the product \sqrt{5\times 2} as the product of square roots \sqrt{5}\sqrt{2}.
\frac{5\sqrt{2}+\sqrt{2}\sqrt{5}+\sqrt{3}\sqrt{5}}{5}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{5\sqrt{2}+\sqrt{10}+\sqrt{3}\sqrt{5}}{5}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{5\sqrt{2}+\sqrt{10}+\sqrt{15}}{5}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.