Evaluate
\sqrt{5}\approx 2.236067977
Quiz
Arithmetic
5 problems similar to:
\frac { \sqrt { 10 } + \sqrt { 15 } } { \sqrt { 2 } + \sqrt { 3 } }
Share
Copied to clipboard
\frac{\left(\sqrt{10}+\sqrt{15}\right)\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}
Rationalize the denominator of \frac{\sqrt{10}+\sqrt{15}}{\sqrt{2}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{2}-\sqrt{3}.
\frac{\left(\sqrt{10}+\sqrt{15}\right)\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{10}+\sqrt{15}\right)\left(\sqrt{2}-\sqrt{3}\right)}{2-3}
Square \sqrt{2}. Square \sqrt{3}.
\frac{\left(\sqrt{10}+\sqrt{15}\right)\left(\sqrt{2}-\sqrt{3}\right)}{-1}
Subtract 3 from 2 to get -1.
-\left(\sqrt{10}+\sqrt{15}\right)\left(\sqrt{2}-\sqrt{3}\right)
Anything divided by -1 gives its opposite.
-\left(\sqrt{10}\sqrt{2}-\sqrt{10}\sqrt{3}+\sqrt{15}\sqrt{2}-\sqrt{15}\sqrt{3}\right)
Apply the distributive property by multiplying each term of \sqrt{10}+\sqrt{15} by each term of \sqrt{2}-\sqrt{3}.
-\left(\sqrt{2}\sqrt{5}\sqrt{2}-\sqrt{10}\sqrt{3}+\sqrt{15}\sqrt{2}-\sqrt{15}\sqrt{3}\right)
Factor 10=2\times 5. Rewrite the square root of the product \sqrt{2\times 5} as the product of square roots \sqrt{2}\sqrt{5}.
-\left(2\sqrt{5}-\sqrt{10}\sqrt{3}+\sqrt{15}\sqrt{2}-\sqrt{15}\sqrt{3}\right)
Multiply \sqrt{2} and \sqrt{2} to get 2.
-\left(2\sqrt{5}-\sqrt{30}+\sqrt{15}\sqrt{2}-\sqrt{15}\sqrt{3}\right)
To multiply \sqrt{10} and \sqrt{3}, multiply the numbers under the square root.
-\left(2\sqrt{5}-\sqrt{30}+\sqrt{30}-\sqrt{15}\sqrt{3}\right)
To multiply \sqrt{15} and \sqrt{2}, multiply the numbers under the square root.
-\left(2\sqrt{5}-\sqrt{15}\sqrt{3}\right)
Combine -\sqrt{30} and \sqrt{30} to get 0.
-\left(2\sqrt{5}-\sqrt{3}\sqrt{5}\sqrt{3}\right)
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
-\left(2\sqrt{5}-3\sqrt{5}\right)
Multiply \sqrt{3} and \sqrt{3} to get 3.
-\left(-\sqrt{5}\right)
Combine 2\sqrt{5} and -3\sqrt{5} to get -\sqrt{5}.
\sqrt{5}
The opposite of -\sqrt{5} is \sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}