Evaluate
2\sqrt{3}-\frac{19}{4}\approx -1.285898385
Factor
\frac{8 \sqrt{3} - 19}{4} = -1.2858983848622456
Share
Copied to clipboard
\frac{\sqrt{\frac{2}{2}-\frac{1}{2}+\frac{1}{4}}-\left(1+\frac{1}{8}+\frac{1}{16}\right)}{\frac{1}{4}}
Convert 1 to fraction \frac{2}{2}.
\frac{\sqrt{\frac{2-1}{2}+\frac{1}{4}}-\left(1+\frac{1}{8}+\frac{1}{16}\right)}{\frac{1}{4}}
Since \frac{2}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\sqrt{\frac{1}{2}+\frac{1}{4}}-\left(1+\frac{1}{8}+\frac{1}{16}\right)}{\frac{1}{4}}
Subtract 1 from 2 to get 1.
\frac{\sqrt{\frac{2}{4}+\frac{1}{4}}-\left(1+\frac{1}{8}+\frac{1}{16}\right)}{\frac{1}{4}}
Least common multiple of 2 and 4 is 4. Convert \frac{1}{2} and \frac{1}{4} to fractions with denominator 4.
\frac{\sqrt{\frac{2+1}{4}}-\left(1+\frac{1}{8}+\frac{1}{16}\right)}{\frac{1}{4}}
Since \frac{2}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\frac{\sqrt{\frac{3}{4}}-\left(1+\frac{1}{8}+\frac{1}{16}\right)}{\frac{1}{4}}
Add 2 and 1 to get 3.
\frac{\frac{\sqrt{3}}{\sqrt{4}}-\left(1+\frac{1}{8}+\frac{1}{16}\right)}{\frac{1}{4}}
Rewrite the square root of the division \sqrt{\frac{3}{4}} as the division of square roots \frac{\sqrt{3}}{\sqrt{4}}.
\frac{\frac{\sqrt{3}}{2}-\left(1+\frac{1}{8}+\frac{1}{16}\right)}{\frac{1}{4}}
Calculate the square root of 4 and get 2.
\frac{\frac{\sqrt{3}}{2}-\left(\frac{8}{8}+\frac{1}{8}+\frac{1}{16}\right)}{\frac{1}{4}}
Convert 1 to fraction \frac{8}{8}.
\frac{\frac{\sqrt{3}}{2}-\left(\frac{8+1}{8}+\frac{1}{16}\right)}{\frac{1}{4}}
Since \frac{8}{8} and \frac{1}{8} have the same denominator, add them by adding their numerators.
\frac{\frac{\sqrt{3}}{2}-\left(\frac{9}{8}+\frac{1}{16}\right)}{\frac{1}{4}}
Add 8 and 1 to get 9.
\frac{\frac{\sqrt{3}}{2}-\left(\frac{18}{16}+\frac{1}{16}\right)}{\frac{1}{4}}
Least common multiple of 8 and 16 is 16. Convert \frac{9}{8} and \frac{1}{16} to fractions with denominator 16.
\frac{\frac{\sqrt{3}}{2}-\frac{18+1}{16}}{\frac{1}{4}}
Since \frac{18}{16} and \frac{1}{16} have the same denominator, add them by adding their numerators.
\frac{\frac{\sqrt{3}}{2}-\frac{19}{16}}{\frac{1}{4}}
Add 18 and 1 to get 19.
\frac{\frac{8\sqrt{3}}{16}-\frac{19}{16}}{\frac{1}{4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 16 is 16. Multiply \frac{\sqrt{3}}{2} times \frac{8}{8}.
\frac{\frac{8\sqrt{3}-19}{16}}{\frac{1}{4}}
Since \frac{8\sqrt{3}}{16} and \frac{19}{16} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(8\sqrt{3}-19\right)\times 4}{16}
Divide \frac{8\sqrt{3}-19}{16} by \frac{1}{4} by multiplying \frac{8\sqrt{3}-19}{16} by the reciprocal of \frac{1}{4}.
\left(8\sqrt{3}-19\right)\times \frac{1}{4}
Divide \left(8\sqrt{3}-19\right)\times 4 by 16 to get \left(8\sqrt{3}-19\right)\times \frac{1}{4}.
8\sqrt{3}\times \frac{1}{4}-19\times \frac{1}{4}
Use the distributive property to multiply 8\sqrt{3}-19 by \frac{1}{4}.
\frac{8}{4}\sqrt{3}-19\times \frac{1}{4}
Multiply 8 and \frac{1}{4} to get \frac{8}{4}.
2\sqrt{3}-19\times \frac{1}{4}
Divide 8 by 4 to get 2.
2\sqrt{3}+\frac{-19}{4}
Multiply -19 and \frac{1}{4} to get \frac{-19}{4}.
2\sqrt{3}-\frac{19}{4}
Fraction \frac{-19}{4} can be rewritten as -\frac{19}{4} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}