Evaluate
\frac{4}{3}\approx 1.333333333
Factor
\frac{2 ^ {2}}{3} = 1\frac{1}{3} = 1.3333333333333333
Share
Copied to clipboard
\frac{\sqrt{0.02}\times 4\sqrt{5}}{\sqrt{0.9}}
Factor 80=4^{2}\times 5. Rewrite the square root of the product \sqrt{4^{2}\times 5} as the product of square roots \sqrt{4^{2}}\sqrt{5}. Take the square root of 4^{2}.
\frac{\sqrt{0.1}\times 4}{\sqrt{0.9}}
To multiply \sqrt{0.02} and \sqrt{5}, multiply the numbers under the square root.
\frac{\sqrt{0.1}\times 4\sqrt{0.9}}{\left(\sqrt{0.9}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{0.1}\times 4}{\sqrt{0.9}} by multiplying numerator and denominator by \sqrt{0.9}.
\frac{\sqrt{0.1}\times 4\sqrt{0.9}}{0.9}
The square of \sqrt{0.9} is 0.9.
\frac{\sqrt{0.09}\times 4}{0.9}
To multiply \sqrt{0.1} and \sqrt{0.9}, multiply the numbers under the square root.
\frac{0.3\times 4}{0.9}
Calculate the square root of 0.09 and get 0.3.
\frac{1.2}{0.9}
Multiply 0.3 and 4 to get 1.2.
\frac{12}{9}
Expand \frac{1.2}{0.9} by multiplying both numerator and the denominator by 10.
\frac{4}{3}
Reduce the fraction \frac{12}{9} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}