\frac { \sqrt { 0,4 } \cdot \sqrt { 0,9 } } { \sqrt { 0,64 } }
Evaluate
0,75
Factor
\frac{3}{2 ^ {2}} = 0.75
Share
Copied to clipboard
\frac{\sqrt{0,36}}{\sqrt{0,64}}
To multiply \sqrt{0,4} and \sqrt{0,9}, multiply the numbers under the square root.
\frac{0,6}{\sqrt{0,64}}
Calculate the square root of 0,36 and get 0,6.
\frac{0,6}{0,8}
Calculate the square root of 0,64 and get 0,8.
\frac{6}{8}
Expand \frac{0,6}{0,8} by multiplying both numerator and the denominator by 10.
\frac{3}{4}
Reduce the fraction \frac{6}{8} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}