Evaluate
-\frac{1366091515557824028364120313033}{15000000000000000000000000000000}\approx -0.091072768
Share
Copied to clipboard
\frac{0.45399049973954675}{3} \cdot -0.6018150231520472
Evaluate trigonometric functions in the problem
\frac{45399049973954675}{300000000000000000}\left(-0.6018150231520472\right)
Expand \frac{0.45399049973954675}{3} by multiplying both numerator and the denominator by 100000000000000000.
\frac{1815961998958187}{12000000000000000}\left(-0.6018150231520472\right)
Reduce the fraction \frac{45399049973954675}{300000000000000000} to lowest terms by extracting and canceling out 25.
\frac{1815961998958187}{12000000000000000}\left(-\frac{752268778940059}{1250000000000000}\right)
Convert decimal number -0.6018150231520472 to fraction -\frac{752268778940059}{10000000000}. Reduce the fraction -\frac{752268778940059}{10000000000} to lowest terms by extracting and canceling out 1.
\frac{1815961998958187\left(-752268778940059\right)}{12000000000000000\times 1250000000000000}
Multiply \frac{1815961998958187}{12000000000000000} times -\frac{752268778940059}{1250000000000000} by multiplying numerator times numerator and denominator times denominator.
\frac{-1366091515557824028364120313033}{15000000000000000000000000000000}
Do the multiplications in the fraction \frac{1815961998958187\left(-752268778940059\right)}{12000000000000000\times 1250000000000000}.
-\frac{1366091515557824028364120313033}{15000000000000000000000000000000}
Fraction \frac{-1366091515557824028364120313033}{15000000000000000000000000000000} can be rewritten as -\frac{1366091515557824028364120313033}{15000000000000000000000000000000} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}