Evaluate
\frac{3}{2}=1.5
Factor
\frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
\frac{\left(\frac{\sqrt{3}}{2}\right)^{2}}{\cot(\frac{\pi }{3})\sin(\frac{\pi }{3})}
Get the value of \sin(\frac{\pi }{3}) from trigonometric values table.
\frac{\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}}{\cot(\frac{\pi }{3})\sin(\frac{\pi }{3})}
To raise \frac{\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}}{\frac{\sqrt{3}}{3}\sin(\frac{\pi }{3})}
Get the value of \cot(\frac{\pi }{3}) from trigonometric values table.
\frac{\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}}{\frac{\sqrt{3}}{3}\times \frac{\sqrt{3}}{2}}
Get the value of \sin(\frac{\pi }{3}) from trigonometric values table.
\frac{\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}}{\frac{\sqrt{3}\sqrt{3}}{3\times 2}}
Multiply \frac{\sqrt{3}}{3} times \frac{\sqrt{3}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(\sqrt{3}\right)^{2}\times 3\times 2}{2^{2}\sqrt{3}\sqrt{3}}
Divide \frac{\left(\sqrt{3}\right)^{2}}{2^{2}} by \frac{\sqrt{3}\sqrt{3}}{3\times 2} by multiplying \frac{\left(\sqrt{3}\right)^{2}}{2^{2}} by the reciprocal of \frac{\sqrt{3}\sqrt{3}}{3\times 2}.
\frac{3}{2}
Cancel out 2\sqrt{3}\sqrt{3} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}