\frac { \sigma } { \sqrt { ( 213369 - 283024 ) ( 167544 - 84 ( 021 ) } }
Evaluate (complex solution)
-\frac{\sqrt{12830451}i\sigma }{384913530}
Evaluate
\text{Indeterminate}
Share
Copied to clipboard
\frac{\sigma }{\sqrt{-69655\left(167544-84\times 21\right)}}
Subtract 283024 from 213369 to get -69655.
\frac{\sigma }{\sqrt{-69655\left(167544-1764\right)}}
Multiply 84 and 21 to get 1764.
\frac{\sigma }{\sqrt{-69655\times 165780}}
Subtract 1764 from 167544 to get 165780.
\frac{\sigma }{\sqrt{-11547405900}}
Multiply -69655 and 165780 to get -11547405900.
\frac{\sigma }{30i\sqrt{12830451}}
Factor -11547405900=\left(30i\right)^{2}\times 12830451. Rewrite the square root of the product \sqrt{\left(30i\right)^{2}\times 12830451} as the product of square roots \sqrt{\left(30i\right)^{2}}\sqrt{12830451}. Take the square root of \left(30i\right)^{2}.
\frac{\sigma \sqrt{12830451}}{30i\left(\sqrt{12830451}\right)^{2}}
Rationalize the denominator of \frac{\sigma }{30i\sqrt{12830451}} by multiplying numerator and denominator by \sqrt{12830451}.
\frac{\sigma \sqrt{12830451}}{30i\times 12830451}
The square of \sqrt{12830451} is 12830451.
\frac{\sigma \sqrt{12830451}}{384913530i}
Multiply 30i and 12830451 to get 384913530i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}