Solve for r
\left\{\begin{matrix}\\r=\frac{\pi a}{4\left(16-\pi \right)}\text{, }&\text{unconditionally}\\r\in \mathrm{R}\text{, }&a=0\end{matrix}\right.
Solve for a
a=\frac{64r}{\pi }-4r
a=0
Share
Copied to clipboard
\pi a^{3}\left(-\frac{a}{4}\right)+16a^{3}\left(1-\frac{\pi }{16}\right)r=0
Multiply both sides of the equation by 16, the least common multiple of 16,4.
\frac{-\pi a}{4}a^{3}+16a^{3}\left(1-\frac{\pi }{16}\right)r=0
Express \pi \left(-\frac{a}{4}\right) as a single fraction.
\frac{-\pi a}{4}a^{3}+\left(16a^{3}+16a^{3}\left(-\frac{\pi }{16}\right)\right)r=0
Use the distributive property to multiply 16a^{3} by 1-\frac{\pi }{16}.
\frac{-\pi a}{4}a^{3}+\left(16a^{3}+\frac{-16\pi }{16}a^{3}\right)r=0
Express 16\left(-\frac{\pi }{16}\right) as a single fraction.
\frac{-\pi a}{4}a^{3}+\left(16a^{3}-\pi a^{3}\right)r=0
Cancel out 16 and 16.
\frac{-\pi a}{4}a^{3}+16a^{3}r-\pi a^{3}r=0
Use the distributive property to multiply 16a^{3}-\pi a^{3} by r.
\frac{-\pi aa^{3}}{4}+16a^{3}r-\pi a^{3}r=0
Express \frac{-\pi a}{4}a^{3} as a single fraction.
16a^{3}r-\pi a^{3}r=-\frac{-\pi aa^{3}}{4}
Subtract \frac{-\pi aa^{3}}{4} from both sides. Anything subtracted from zero gives its negation.
16a^{3}r-\pi a^{3}r=-\frac{-\pi a^{4}}{4}
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
64a^{3}r-4\pi a^{3}r=\pi a^{4}
Multiply both sides of the equation by 4.
\left(64a^{3}-4\pi a^{3}\right)r=\pi a^{4}
Combine all terms containing r.
\frac{\left(64a^{3}-4\pi a^{3}\right)r}{64a^{3}-4\pi a^{3}}=\frac{\pi a^{4}}{64a^{3}-4\pi a^{3}}
Divide both sides by 64a^{3}-4\pi a^{3}.
r=\frac{\pi a^{4}}{64a^{3}-4\pi a^{3}}
Dividing by 64a^{3}-4\pi a^{3} undoes the multiplication by 64a^{3}-4\pi a^{3}.
r=\frac{\pi a}{4\left(16-\pi \right)}
Divide \pi a^{4} by 64a^{3}-4\pi a^{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}