Skip to main content
Solve for r
Tick mark Image
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

\pi a^{3}\left(-\frac{a}{4}\right)+16a^{3}\left(1-\frac{\pi }{16}\right)r=0
Multiply both sides of the equation by 16, the least common multiple of 16,4.
\frac{-\pi a}{4}a^{3}+16a^{3}\left(1-\frac{\pi }{16}\right)r=0
Express \pi \left(-\frac{a}{4}\right) as a single fraction.
\frac{-\pi a}{4}a^{3}+\left(16a^{3}+16a^{3}\left(-\frac{\pi }{16}\right)\right)r=0
Use the distributive property to multiply 16a^{3} by 1-\frac{\pi }{16}.
\frac{-\pi a}{4}a^{3}+\left(16a^{3}+\frac{-16\pi }{16}a^{3}\right)r=0
Express 16\left(-\frac{\pi }{16}\right) as a single fraction.
\frac{-\pi a}{4}a^{3}+\left(16a^{3}-\pi a^{3}\right)r=0
Cancel out 16 and 16.
\frac{-\pi a}{4}a^{3}+16a^{3}r-\pi a^{3}r=0
Use the distributive property to multiply 16a^{3}-\pi a^{3} by r.
\frac{-\pi aa^{3}}{4}+16a^{3}r-\pi a^{3}r=0
Express \frac{-\pi a}{4}a^{3} as a single fraction.
16a^{3}r-\pi a^{3}r=-\frac{-\pi aa^{3}}{4}
Subtract \frac{-\pi aa^{3}}{4} from both sides. Anything subtracted from zero gives its negation.
16a^{3}r-\pi a^{3}r=-\frac{-\pi a^{4}}{4}
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
64a^{3}r-4\pi a^{3}r=\pi a^{4}
Multiply both sides of the equation by 4.
\left(64a^{3}-4\pi a^{3}\right)r=\pi a^{4}
Combine all terms containing r.
\frac{\left(64a^{3}-4\pi a^{3}\right)r}{64a^{3}-4\pi a^{3}}=\frac{\pi a^{4}}{64a^{3}-4\pi a^{3}}
Divide both sides by 64a^{3}-4\pi a^{3}.
r=\frac{\pi a^{4}}{64a^{3}-4\pi a^{3}}
Dividing by 64a^{3}-4\pi a^{3} undoes the multiplication by 64a^{3}-4\pi a^{3}.
r=\frac{\pi a}{4\left(16-\pi \right)}
Divide \pi a^{4} by 64a^{3}-4\pi a^{3}.