Solve for x (complex solution)
x=\frac{7\cot(\alpha )}{2\pi }
\nexists n_{1}\in \mathrm{Z}\text{ : }\alpha =\frac{\pi n_{1}}{2}
Solve for x
x=\frac{7\cot(\alpha )}{2\pi }
\exists n_{1}\in \mathrm{Z}\text{ : }\left(\alpha >\frac{\pi n_{1}}{2}\text{ and }\alpha <\frac{\pi n_{1}}{2}+\frac{\pi }{2}\right)
Graph
Share
Copied to clipboard
2\pi x\tan(\alpha )=7
Multiply both sides of the equation by 4, the least common multiple of 2,4.
2\pi \tan(\alpha )x=7
The equation is in standard form.
\frac{2\pi \tan(\alpha )x}{2\pi \tan(\alpha )}=\frac{7}{2\pi \tan(\alpha )}
Divide both sides by 2\pi \tan(\alpha ).
x=\frac{7}{2\pi \tan(\alpha )}
Dividing by 2\pi \tan(\alpha ) undoes the multiplication by 2\pi \tan(\alpha ).
x=\frac{7\cot(\alpha )}{2\pi }
Divide 7 by 2\pi \tan(\alpha ).
2\pi x\tan(\alpha )=7
Multiply both sides of the equation by 4, the least common multiple of 2,4.
2\pi \tan(\alpha )x=7
The equation is in standard form.
\frac{2\pi \tan(\alpha )x}{2\pi \tan(\alpha )}=\frac{7}{2\pi \tan(\alpha )}
Divide both sides by 2\pi \tan(\alpha ).
x=\frac{7}{2\pi \tan(\alpha )}
Dividing by 2\pi \tan(\alpha ) undoes the multiplication by 2\pi \tan(\alpha ).
x=\frac{7\cot(\alpha )}{2\pi }
Divide 7 by 2\pi \tan(\alpha ).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}