\frac { \partial y } { d x } = 2 x + 3
Solve for d
\left\{\begin{matrix}d=\frac{y∂}{x\left(2x+3\right)}\text{, }&y\neq 0\text{ and }∂\neq 0\text{ and }x\neq -\frac{3}{2}\text{ and }x\neq 0\\d\neq 0\text{, }&\left(∂=0\text{ or }y=0\right)\text{ and }x=-\frac{3}{2}\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{d\left(8y∂+9d\right)}-3d}{4d}\text{, }&\left(arg(d)\geq \pi \text{ and }d\neq 0\right)\text{ or }\left(y\neq 0\text{ and }∂\neq 0\text{ and }d\neq 0\right)\\x=-\frac{\sqrt{d\left(8y∂+9d\right)}+3d}{4d}\text{, }&\left(arg(d)<\pi \text{ and }d\neq 0\right)\text{ or }\left(y\neq 0\text{ and }∂\neq 0\text{ and }d\neq 0\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
∂y=2xdx+dx\times 3
Variable d cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by dx.
∂y=2x^{2}d+dx\times 3
Multiply x and x to get x^{2}.
2x^{2}d+dx\times 3=∂y
Swap sides so that all variable terms are on the left hand side.
\left(2x^{2}+x\times 3\right)d=∂y
Combine all terms containing d.
\left(2x^{2}+3x\right)d=y∂
The equation is in standard form.
\frac{\left(2x^{2}+3x\right)d}{2x^{2}+3x}=\frac{y∂}{2x^{2}+3x}
Divide both sides by 2x^{2}+3x.
d=\frac{y∂}{2x^{2}+3x}
Dividing by 2x^{2}+3x undoes the multiplication by 2x^{2}+3x.
d=\frac{y∂}{x\left(2x+3\right)}
Divide ∂y by 2x^{2}+3x.
d=\frac{y∂}{x\left(2x+3\right)}\text{, }d\neq 0
Variable d cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}