Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Share

\frac{\frac{y\left(y-7\right)}{\left(y-7\right)\left(y+7\right)}-\frac{y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}}{\frac{y}{y+7}+\frac{y}{y-7}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y+7 and y-7 is \left(y-7\right)\left(y+7\right). Multiply \frac{y}{y+7} times \frac{y-7}{y-7}. Multiply \frac{y}{y-7} times \frac{y+7}{y+7}.
\frac{\frac{y\left(y-7\right)-y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}}{\frac{y}{y+7}+\frac{y}{y-7}}
Since \frac{y\left(y-7\right)}{\left(y-7\right)\left(y+7\right)} and \frac{y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{2}-7y-y^{2}-7y}{\left(y-7\right)\left(y+7\right)}}{\frac{y}{y+7}+\frac{y}{y-7}}
Do the multiplications in y\left(y-7\right)-y\left(y+7\right).
\frac{\frac{-14y}{\left(y-7\right)\left(y+7\right)}}{\frac{y}{y+7}+\frac{y}{y-7}}
Combine like terms in y^{2}-7y-y^{2}-7y.
\frac{\frac{-14y}{\left(y-7\right)\left(y+7\right)}}{\frac{y\left(y-7\right)}{\left(y-7\right)\left(y+7\right)}+\frac{y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y+7 and y-7 is \left(y-7\right)\left(y+7\right). Multiply \frac{y}{y+7} times \frac{y-7}{y-7}. Multiply \frac{y}{y-7} times \frac{y+7}{y+7}.
\frac{\frac{-14y}{\left(y-7\right)\left(y+7\right)}}{\frac{y\left(y-7\right)+y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}}
Since \frac{y\left(y-7\right)}{\left(y-7\right)\left(y+7\right)} and \frac{y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-14y}{\left(y-7\right)\left(y+7\right)}}{\frac{y^{2}-7y+y^{2}+7y}{\left(y-7\right)\left(y+7\right)}}
Do the multiplications in y\left(y-7\right)+y\left(y+7\right).
\frac{\frac{-14y}{\left(y-7\right)\left(y+7\right)}}{\frac{2y^{2}}{\left(y-7\right)\left(y+7\right)}}
Combine like terms in y^{2}-7y+y^{2}+7y.
\frac{-14y\left(y-7\right)\left(y+7\right)}{\left(y-7\right)\left(y+7\right)\times 2y^{2}}
Divide \frac{-14y}{\left(y-7\right)\left(y+7\right)} by \frac{2y^{2}}{\left(y-7\right)\left(y+7\right)} by multiplying \frac{-14y}{\left(y-7\right)\left(y+7\right)} by the reciprocal of \frac{2y^{2}}{\left(y-7\right)\left(y+7\right)}.
\frac{-7}{y}
Cancel out 2y\left(y-7\right)\left(y+7\right) in both numerator and denominator.
\frac{\frac{y\left(y-7\right)}{\left(y-7\right)\left(y+7\right)}-\frac{y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}}{\frac{y}{y+7}+\frac{y}{y-7}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y+7 and y-7 is \left(y-7\right)\left(y+7\right). Multiply \frac{y}{y+7} times \frac{y-7}{y-7}. Multiply \frac{y}{y-7} times \frac{y+7}{y+7}.
\frac{\frac{y\left(y-7\right)-y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}}{\frac{y}{y+7}+\frac{y}{y-7}}
Since \frac{y\left(y-7\right)}{\left(y-7\right)\left(y+7\right)} and \frac{y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{2}-7y-y^{2}-7y}{\left(y-7\right)\left(y+7\right)}}{\frac{y}{y+7}+\frac{y}{y-7}}
Do the multiplications in y\left(y-7\right)-y\left(y+7\right).
\frac{\frac{-14y}{\left(y-7\right)\left(y+7\right)}}{\frac{y}{y+7}+\frac{y}{y-7}}
Combine like terms in y^{2}-7y-y^{2}-7y.
\frac{\frac{-14y}{\left(y-7\right)\left(y+7\right)}}{\frac{y\left(y-7\right)}{\left(y-7\right)\left(y+7\right)}+\frac{y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y+7 and y-7 is \left(y-7\right)\left(y+7\right). Multiply \frac{y}{y+7} times \frac{y-7}{y-7}. Multiply \frac{y}{y-7} times \frac{y+7}{y+7}.
\frac{\frac{-14y}{\left(y-7\right)\left(y+7\right)}}{\frac{y\left(y-7\right)+y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}}
Since \frac{y\left(y-7\right)}{\left(y-7\right)\left(y+7\right)} and \frac{y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-14y}{\left(y-7\right)\left(y+7\right)}}{\frac{y^{2}-7y+y^{2}+7y}{\left(y-7\right)\left(y+7\right)}}
Do the multiplications in y\left(y-7\right)+y\left(y+7\right).
\frac{\frac{-14y}{\left(y-7\right)\left(y+7\right)}}{\frac{2y^{2}}{\left(y-7\right)\left(y+7\right)}}
Combine like terms in y^{2}-7y+y^{2}+7y.
\frac{-14y\left(y-7\right)\left(y+7\right)}{\left(y-7\right)\left(y+7\right)\times 2y^{2}}
Divide \frac{-14y}{\left(y-7\right)\left(y+7\right)} by \frac{2y^{2}}{\left(y-7\right)\left(y+7\right)} by multiplying \frac{-14y}{\left(y-7\right)\left(y+7\right)} by the reciprocal of \frac{2y^{2}}{\left(y-7\right)\left(y+7\right)}.
\frac{-7}{y}
Cancel out 2y\left(y-7\right)\left(y+7\right) in both numerator and denominator.