Solve for x
x=5
Graph
Share
Copied to clipboard
\frac{\frac{3\left(x-3\right)}{6}-\frac{2\left(x-2\right)}{6}}{1-\frac{1}{6}}=\frac{\frac{x}{3}-\frac{x}{2}}{\frac{1}{2}+\frac{1}{3}}+1
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{x-3}{2} times \frac{3}{3}. Multiply \frac{x-2}{3} times \frac{2}{2}.
\frac{\frac{3\left(x-3\right)-2\left(x-2\right)}{6}}{1-\frac{1}{6}}=\frac{\frac{x}{3}-\frac{x}{2}}{\frac{1}{2}+\frac{1}{3}}+1
Since \frac{3\left(x-3\right)}{6} and \frac{2\left(x-2\right)}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3x-9-2x+4}{6}}{1-\frac{1}{6}}=\frac{\frac{x}{3}-\frac{x}{2}}{\frac{1}{2}+\frac{1}{3}}+1
Do the multiplications in 3\left(x-3\right)-2\left(x-2\right).
\frac{\frac{x-5}{6}}{1-\frac{1}{6}}=\frac{\frac{x}{3}-\frac{x}{2}}{\frac{1}{2}+\frac{1}{3}}+1
Combine like terms in 3x-9-2x+4.
\frac{\frac{x-5}{6}}{\frac{6}{6}-\frac{1}{6}}=\frac{\frac{x}{3}-\frac{x}{2}}{\frac{1}{2}+\frac{1}{3}}+1
Convert 1 to fraction \frac{6}{6}.
\frac{\frac{x-5}{6}}{\frac{6-1}{6}}=\frac{\frac{x}{3}-\frac{x}{2}}{\frac{1}{2}+\frac{1}{3}}+1
Since \frac{6}{6} and \frac{1}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x-5}{6}}{\frac{5}{6}}=\frac{\frac{x}{3}-\frac{x}{2}}{\frac{1}{2}+\frac{1}{3}}+1
Subtract 1 from 6 to get 5.
\frac{\frac{x-5}{6}}{\frac{5}{6}}=\frac{-\frac{1}{6}x}{\frac{1}{2}+\frac{1}{3}}+1
Combine \frac{x}{3} and -\frac{x}{2} to get -\frac{1}{6}x.
\frac{\frac{x-5}{6}}{\frac{5}{6}}=\frac{-\frac{1}{6}x}{\frac{3}{6}+\frac{2}{6}}+1
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{\frac{x-5}{6}}{\frac{5}{6}}=\frac{-\frac{1}{6}x}{\frac{3+2}{6}}+1
Since \frac{3}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
\frac{\frac{x-5}{6}}{\frac{5}{6}}=\frac{-\frac{1}{6}x}{\frac{5}{6}}+1
Add 3 and 2 to get 5.
\frac{\frac{x-5}{6}}{\frac{5}{6}}=-\frac{1}{5}x+1
Divide -\frac{1}{6}x by \frac{5}{6} to get -\frac{1}{5}x.
\frac{\frac{1}{6}x-\frac{5}{6}}{\frac{5}{6}}=-\frac{1}{5}x+1
Divide each term of x-5 by 6 to get \frac{1}{6}x-\frac{5}{6}.
\frac{\frac{1}{6}x}{\frac{5}{6}}+\frac{-\frac{5}{6}}{\frac{5}{6}}=-\frac{1}{5}x+1
Divide each term of \frac{1}{6}x-\frac{5}{6} by \frac{5}{6} to get \frac{\frac{1}{6}x}{\frac{5}{6}}+\frac{-\frac{5}{6}}{\frac{5}{6}}.
\frac{1}{5}x+\frac{-\frac{5}{6}}{\frac{5}{6}}=-\frac{1}{5}x+1
Divide \frac{1}{6}x by \frac{5}{6} to get \frac{1}{5}x.
\frac{1}{5}x-1=-\frac{1}{5}x+1
Divide -\frac{5}{6} by \frac{5}{6} to get -1.
\frac{1}{5}x-1+\frac{1}{5}x=1
Add \frac{1}{5}x to both sides.
\frac{2}{5}x-1=1
Combine \frac{1}{5}x and \frac{1}{5}x to get \frac{2}{5}x.
\frac{2}{5}x=1+1
Add 1 to both sides.
\frac{2}{5}x=2
Add 1 and 1 to get 2.
x=2\times \frac{5}{2}
Multiply both sides by \frac{5}{2}, the reciprocal of \frac{2}{5}.
x=5
Cancel out 2 and 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}