Evaluate
\frac{2x-1}{139-12x}
Expand
\frac{2x-1}{139-12x}
Graph
Share
Copied to clipboard
\frac{\frac{x\left(x+9\right)}{\left(x-10\right)\left(x+9\right)}+\frac{x\left(x-10\right)}{\left(x-10\right)\left(x+9\right)}}{\frac{x}{x-10}-\frac{13x}{x+9}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-10 and x+9 is \left(x-10\right)\left(x+9\right). Multiply \frac{x}{x-10} times \frac{x+9}{x+9}. Multiply \frac{x}{x+9} times \frac{x-10}{x-10}.
\frac{\frac{x\left(x+9\right)+x\left(x-10\right)}{\left(x-10\right)\left(x+9\right)}}{\frac{x}{x-10}-\frac{13x}{x+9}}
Since \frac{x\left(x+9\right)}{\left(x-10\right)\left(x+9\right)} and \frac{x\left(x-10\right)}{\left(x-10\right)\left(x+9\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}+9x+x^{2}-10x}{\left(x-10\right)\left(x+9\right)}}{\frac{x}{x-10}-\frac{13x}{x+9}}
Do the multiplications in x\left(x+9\right)+x\left(x-10\right).
\frac{\frac{2x^{2}-x}{\left(x-10\right)\left(x+9\right)}}{\frac{x}{x-10}-\frac{13x}{x+9}}
Combine like terms in x^{2}+9x+x^{2}-10x.
\frac{\frac{2x^{2}-x}{\left(x-10\right)\left(x+9\right)}}{\frac{x\left(x+9\right)}{\left(x-10\right)\left(x+9\right)}-\frac{13x\left(x-10\right)}{\left(x-10\right)\left(x+9\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-10 and x+9 is \left(x-10\right)\left(x+9\right). Multiply \frac{x}{x-10} times \frac{x+9}{x+9}. Multiply \frac{13x}{x+9} times \frac{x-10}{x-10}.
\frac{\frac{2x^{2}-x}{\left(x-10\right)\left(x+9\right)}}{\frac{x\left(x+9\right)-13x\left(x-10\right)}{\left(x-10\right)\left(x+9\right)}}
Since \frac{x\left(x+9\right)}{\left(x-10\right)\left(x+9\right)} and \frac{13x\left(x-10\right)}{\left(x-10\right)\left(x+9\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x^{2}-x}{\left(x-10\right)\left(x+9\right)}}{\frac{x^{2}+9x-13x^{2}+130x}{\left(x-10\right)\left(x+9\right)}}
Do the multiplications in x\left(x+9\right)-13x\left(x-10\right).
\frac{\frac{2x^{2}-x}{\left(x-10\right)\left(x+9\right)}}{\frac{-12x^{2}+139x}{\left(x-10\right)\left(x+9\right)}}
Combine like terms in x^{2}+9x-13x^{2}+130x.
\frac{\left(2x^{2}-x\right)\left(x-10\right)\left(x+9\right)}{\left(x-10\right)\left(x+9\right)\left(-12x^{2}+139x\right)}
Divide \frac{2x^{2}-x}{\left(x-10\right)\left(x+9\right)} by \frac{-12x^{2}+139x}{\left(x-10\right)\left(x+9\right)} by multiplying \frac{2x^{2}-x}{\left(x-10\right)\left(x+9\right)} by the reciprocal of \frac{-12x^{2}+139x}{\left(x-10\right)\left(x+9\right)}.
\frac{2x^{2}-x}{-12x^{2}+139x}
Cancel out \left(x-10\right)\left(x+9\right) in both numerator and denominator.
\frac{x\left(2x-1\right)}{x\left(-12x+139\right)}
Factor the expressions that are not already factored.
\frac{2x-1}{-12x+139}
Cancel out x in both numerator and denominator.
\frac{\frac{x\left(x+9\right)}{\left(x-10\right)\left(x+9\right)}+\frac{x\left(x-10\right)}{\left(x-10\right)\left(x+9\right)}}{\frac{x}{x-10}-\frac{13x}{x+9}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-10 and x+9 is \left(x-10\right)\left(x+9\right). Multiply \frac{x}{x-10} times \frac{x+9}{x+9}. Multiply \frac{x}{x+9} times \frac{x-10}{x-10}.
\frac{\frac{x\left(x+9\right)+x\left(x-10\right)}{\left(x-10\right)\left(x+9\right)}}{\frac{x}{x-10}-\frac{13x}{x+9}}
Since \frac{x\left(x+9\right)}{\left(x-10\right)\left(x+9\right)} and \frac{x\left(x-10\right)}{\left(x-10\right)\left(x+9\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}+9x+x^{2}-10x}{\left(x-10\right)\left(x+9\right)}}{\frac{x}{x-10}-\frac{13x}{x+9}}
Do the multiplications in x\left(x+9\right)+x\left(x-10\right).
\frac{\frac{2x^{2}-x}{\left(x-10\right)\left(x+9\right)}}{\frac{x}{x-10}-\frac{13x}{x+9}}
Combine like terms in x^{2}+9x+x^{2}-10x.
\frac{\frac{2x^{2}-x}{\left(x-10\right)\left(x+9\right)}}{\frac{x\left(x+9\right)}{\left(x-10\right)\left(x+9\right)}-\frac{13x\left(x-10\right)}{\left(x-10\right)\left(x+9\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-10 and x+9 is \left(x-10\right)\left(x+9\right). Multiply \frac{x}{x-10} times \frac{x+9}{x+9}. Multiply \frac{13x}{x+9} times \frac{x-10}{x-10}.
\frac{\frac{2x^{2}-x}{\left(x-10\right)\left(x+9\right)}}{\frac{x\left(x+9\right)-13x\left(x-10\right)}{\left(x-10\right)\left(x+9\right)}}
Since \frac{x\left(x+9\right)}{\left(x-10\right)\left(x+9\right)} and \frac{13x\left(x-10\right)}{\left(x-10\right)\left(x+9\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x^{2}-x}{\left(x-10\right)\left(x+9\right)}}{\frac{x^{2}+9x-13x^{2}+130x}{\left(x-10\right)\left(x+9\right)}}
Do the multiplications in x\left(x+9\right)-13x\left(x-10\right).
\frac{\frac{2x^{2}-x}{\left(x-10\right)\left(x+9\right)}}{\frac{-12x^{2}+139x}{\left(x-10\right)\left(x+9\right)}}
Combine like terms in x^{2}+9x-13x^{2}+130x.
\frac{\left(2x^{2}-x\right)\left(x-10\right)\left(x+9\right)}{\left(x-10\right)\left(x+9\right)\left(-12x^{2}+139x\right)}
Divide \frac{2x^{2}-x}{\left(x-10\right)\left(x+9\right)} by \frac{-12x^{2}+139x}{\left(x-10\right)\left(x+9\right)} by multiplying \frac{2x^{2}-x}{\left(x-10\right)\left(x+9\right)} by the reciprocal of \frac{-12x^{2}+139x}{\left(x-10\right)\left(x+9\right)}.
\frac{2x^{2}-x}{-12x^{2}+139x}
Cancel out \left(x-10\right)\left(x+9\right) in both numerator and denominator.
\frac{x\left(2x-1\right)}{x\left(-12x+139\right)}
Factor the expressions that are not already factored.
\frac{2x-1}{-12x+139}
Cancel out x in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}