Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{x\left(x+9\right)}{\left(x-10\right)\left(x+9\right)}+\frac{x\left(x-10\right)}{\left(x-10\right)\left(x+9\right)}}{\frac{x}{x-10}-\frac{13x}{x+9}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-10 and x+9 is \left(x-10\right)\left(x+9\right). Multiply \frac{x}{x-10} times \frac{x+9}{x+9}. Multiply \frac{x}{x+9} times \frac{x-10}{x-10}.
\frac{\frac{x\left(x+9\right)+x\left(x-10\right)}{\left(x-10\right)\left(x+9\right)}}{\frac{x}{x-10}-\frac{13x}{x+9}}
Since \frac{x\left(x+9\right)}{\left(x-10\right)\left(x+9\right)} and \frac{x\left(x-10\right)}{\left(x-10\right)\left(x+9\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}+9x+x^{2}-10x}{\left(x-10\right)\left(x+9\right)}}{\frac{x}{x-10}-\frac{13x}{x+9}}
Do the multiplications in x\left(x+9\right)+x\left(x-10\right).
\frac{\frac{2x^{2}-x}{\left(x-10\right)\left(x+9\right)}}{\frac{x}{x-10}-\frac{13x}{x+9}}
Combine like terms in x^{2}+9x+x^{2}-10x.
\frac{\frac{2x^{2}-x}{\left(x-10\right)\left(x+9\right)}}{\frac{x\left(x+9\right)}{\left(x-10\right)\left(x+9\right)}-\frac{13x\left(x-10\right)}{\left(x-10\right)\left(x+9\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-10 and x+9 is \left(x-10\right)\left(x+9\right). Multiply \frac{x}{x-10} times \frac{x+9}{x+9}. Multiply \frac{13x}{x+9} times \frac{x-10}{x-10}.
\frac{\frac{2x^{2}-x}{\left(x-10\right)\left(x+9\right)}}{\frac{x\left(x+9\right)-13x\left(x-10\right)}{\left(x-10\right)\left(x+9\right)}}
Since \frac{x\left(x+9\right)}{\left(x-10\right)\left(x+9\right)} and \frac{13x\left(x-10\right)}{\left(x-10\right)\left(x+9\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x^{2}-x}{\left(x-10\right)\left(x+9\right)}}{\frac{x^{2}+9x-13x^{2}+130x}{\left(x-10\right)\left(x+9\right)}}
Do the multiplications in x\left(x+9\right)-13x\left(x-10\right).
\frac{\frac{2x^{2}-x}{\left(x-10\right)\left(x+9\right)}}{\frac{-12x^{2}+139x}{\left(x-10\right)\left(x+9\right)}}
Combine like terms in x^{2}+9x-13x^{2}+130x.
\frac{\left(2x^{2}-x\right)\left(x-10\right)\left(x+9\right)}{\left(x-10\right)\left(x+9\right)\left(-12x^{2}+139x\right)}
Divide \frac{2x^{2}-x}{\left(x-10\right)\left(x+9\right)} by \frac{-12x^{2}+139x}{\left(x-10\right)\left(x+9\right)} by multiplying \frac{2x^{2}-x}{\left(x-10\right)\left(x+9\right)} by the reciprocal of \frac{-12x^{2}+139x}{\left(x-10\right)\left(x+9\right)}.
\frac{2x^{2}-x}{-12x^{2}+139x}
Cancel out \left(x-10\right)\left(x+9\right) in both numerator and denominator.
\frac{x\left(2x-1\right)}{x\left(-12x+139\right)}
Factor the expressions that are not already factored.
\frac{2x-1}{-12x+139}
Cancel out x in both numerator and denominator.
\frac{\frac{x\left(x+9\right)}{\left(x-10\right)\left(x+9\right)}+\frac{x\left(x-10\right)}{\left(x-10\right)\left(x+9\right)}}{\frac{x}{x-10}-\frac{13x}{x+9}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-10 and x+9 is \left(x-10\right)\left(x+9\right). Multiply \frac{x}{x-10} times \frac{x+9}{x+9}. Multiply \frac{x}{x+9} times \frac{x-10}{x-10}.
\frac{\frac{x\left(x+9\right)+x\left(x-10\right)}{\left(x-10\right)\left(x+9\right)}}{\frac{x}{x-10}-\frac{13x}{x+9}}
Since \frac{x\left(x+9\right)}{\left(x-10\right)\left(x+9\right)} and \frac{x\left(x-10\right)}{\left(x-10\right)\left(x+9\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}+9x+x^{2}-10x}{\left(x-10\right)\left(x+9\right)}}{\frac{x}{x-10}-\frac{13x}{x+9}}
Do the multiplications in x\left(x+9\right)+x\left(x-10\right).
\frac{\frac{2x^{2}-x}{\left(x-10\right)\left(x+9\right)}}{\frac{x}{x-10}-\frac{13x}{x+9}}
Combine like terms in x^{2}+9x+x^{2}-10x.
\frac{\frac{2x^{2}-x}{\left(x-10\right)\left(x+9\right)}}{\frac{x\left(x+9\right)}{\left(x-10\right)\left(x+9\right)}-\frac{13x\left(x-10\right)}{\left(x-10\right)\left(x+9\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-10 and x+9 is \left(x-10\right)\left(x+9\right). Multiply \frac{x}{x-10} times \frac{x+9}{x+9}. Multiply \frac{13x}{x+9} times \frac{x-10}{x-10}.
\frac{\frac{2x^{2}-x}{\left(x-10\right)\left(x+9\right)}}{\frac{x\left(x+9\right)-13x\left(x-10\right)}{\left(x-10\right)\left(x+9\right)}}
Since \frac{x\left(x+9\right)}{\left(x-10\right)\left(x+9\right)} and \frac{13x\left(x-10\right)}{\left(x-10\right)\left(x+9\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x^{2}-x}{\left(x-10\right)\left(x+9\right)}}{\frac{x^{2}+9x-13x^{2}+130x}{\left(x-10\right)\left(x+9\right)}}
Do the multiplications in x\left(x+9\right)-13x\left(x-10\right).
\frac{\frac{2x^{2}-x}{\left(x-10\right)\left(x+9\right)}}{\frac{-12x^{2}+139x}{\left(x-10\right)\left(x+9\right)}}
Combine like terms in x^{2}+9x-13x^{2}+130x.
\frac{\left(2x^{2}-x\right)\left(x-10\right)\left(x+9\right)}{\left(x-10\right)\left(x+9\right)\left(-12x^{2}+139x\right)}
Divide \frac{2x^{2}-x}{\left(x-10\right)\left(x+9\right)} by \frac{-12x^{2}+139x}{\left(x-10\right)\left(x+9\right)} by multiplying \frac{2x^{2}-x}{\left(x-10\right)\left(x+9\right)} by the reciprocal of \frac{-12x^{2}+139x}{\left(x-10\right)\left(x+9\right)}.
\frac{2x^{2}-x}{-12x^{2}+139x}
Cancel out \left(x-10\right)\left(x+9\right) in both numerator and denominator.
\frac{x\left(2x-1\right)}{x\left(-12x+139\right)}
Factor the expressions that are not already factored.
\frac{2x-1}{-12x+139}
Cancel out x in both numerator and denominator.