Evaluate
\frac{3x^{3}+2y^{3}}{y\left(x+12\right)}
Expand
\frac{3x^{3}+2y^{3}}{y\left(x+12\right)}
Share
Copied to clipboard
\frac{\frac{x\times 3x^{2}}{6x^{2}y^{2}}+\frac{y\times 2y^{2}}{6x^{2}y^{2}}}{\frac{1}{6xy}+\frac{2}{x^{2}y}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2y^{2} and 3x^{2} is 6x^{2}y^{2}. Multiply \frac{x}{2y^{2}} times \frac{3x^{2}}{3x^{2}}. Multiply \frac{y}{3x^{2}} times \frac{2y^{2}}{2y^{2}}.
\frac{\frac{x\times 3x^{2}+y\times 2y^{2}}{6x^{2}y^{2}}}{\frac{1}{6xy}+\frac{2}{x^{2}y}}
Since \frac{x\times 3x^{2}}{6x^{2}y^{2}} and \frac{y\times 2y^{2}}{6x^{2}y^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{3x^{3}+2y^{3}}{6x^{2}y^{2}}}{\frac{1}{6xy}+\frac{2}{x^{2}y}}
Do the multiplications in x\times 3x^{2}+y\times 2y^{2}.
\frac{\frac{3x^{3}+2y^{3}}{6x^{2}y^{2}}}{\frac{x}{6yx^{2}}+\frac{2\times 6}{6yx^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6xy and x^{2}y is 6yx^{2}. Multiply \frac{1}{6xy} times \frac{x}{x}. Multiply \frac{2}{x^{2}y} times \frac{6}{6}.
\frac{\frac{3x^{3}+2y^{3}}{6x^{2}y^{2}}}{\frac{x+2\times 6}{6yx^{2}}}
Since \frac{x}{6yx^{2}} and \frac{2\times 6}{6yx^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{3x^{3}+2y^{3}}{6x^{2}y^{2}}}{\frac{x+12}{6yx^{2}}}
Do the multiplications in x+2\times 6.
\frac{\left(3x^{3}+2y^{3}\right)\times 6yx^{2}}{6x^{2}y^{2}\left(x+12\right)}
Divide \frac{3x^{3}+2y^{3}}{6x^{2}y^{2}} by \frac{x+12}{6yx^{2}} by multiplying \frac{3x^{3}+2y^{3}}{6x^{2}y^{2}} by the reciprocal of \frac{x+12}{6yx^{2}}.
\frac{3x^{3}+2y^{3}}{y\left(x+12\right)}
Cancel out 6yx^{2} in both numerator and denominator.
\frac{3x^{3}+2y^{3}}{yx+12y}
Use the distributive property to multiply y by x+12.
\frac{\frac{x\times 3x^{2}}{6x^{2}y^{2}}+\frac{y\times 2y^{2}}{6x^{2}y^{2}}}{\frac{1}{6xy}+\frac{2}{x^{2}y}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2y^{2} and 3x^{2} is 6x^{2}y^{2}. Multiply \frac{x}{2y^{2}} times \frac{3x^{2}}{3x^{2}}. Multiply \frac{y}{3x^{2}} times \frac{2y^{2}}{2y^{2}}.
\frac{\frac{x\times 3x^{2}+y\times 2y^{2}}{6x^{2}y^{2}}}{\frac{1}{6xy}+\frac{2}{x^{2}y}}
Since \frac{x\times 3x^{2}}{6x^{2}y^{2}} and \frac{y\times 2y^{2}}{6x^{2}y^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{3x^{3}+2y^{3}}{6x^{2}y^{2}}}{\frac{1}{6xy}+\frac{2}{x^{2}y}}
Do the multiplications in x\times 3x^{2}+y\times 2y^{2}.
\frac{\frac{3x^{3}+2y^{3}}{6x^{2}y^{2}}}{\frac{x}{6yx^{2}}+\frac{2\times 6}{6yx^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6xy and x^{2}y is 6yx^{2}. Multiply \frac{1}{6xy} times \frac{x}{x}. Multiply \frac{2}{x^{2}y} times \frac{6}{6}.
\frac{\frac{3x^{3}+2y^{3}}{6x^{2}y^{2}}}{\frac{x+2\times 6}{6yx^{2}}}
Since \frac{x}{6yx^{2}} and \frac{2\times 6}{6yx^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{3x^{3}+2y^{3}}{6x^{2}y^{2}}}{\frac{x+12}{6yx^{2}}}
Do the multiplications in x+2\times 6.
\frac{\left(3x^{3}+2y^{3}\right)\times 6yx^{2}}{6x^{2}y^{2}\left(x+12\right)}
Divide \frac{3x^{3}+2y^{3}}{6x^{2}y^{2}} by \frac{x+12}{6yx^{2}} by multiplying \frac{3x^{3}+2y^{3}}{6x^{2}y^{2}} by the reciprocal of \frac{x+12}{6yx^{2}}.
\frac{3x^{3}+2y^{3}}{y\left(x+12\right)}
Cancel out 6yx^{2} in both numerator and denominator.
\frac{3x^{3}+2y^{3}}{yx+12y}
Use the distributive property to multiply y by x+12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}