Evaluate
\frac{5x\left(4x^{2}-225\right)}{36\left(20-x^{2}\right)}
Expand
-\frac{5\left(4x^{3}-225x\right)}{36\left(x^{2}-20\right)}
Graph
Share
Copied to clipboard
\frac{\frac{4x^{2}}{36}-\frac{25\times 9}{36}}{\frac{4}{x}-\frac{x}{5}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 9 and 4 is 36. Multiply \frac{x^{2}}{9} times \frac{4}{4}. Multiply \frac{25}{4} times \frac{9}{9}.
\frac{\frac{4x^{2}-25\times 9}{36}}{\frac{4}{x}-\frac{x}{5}}
Since \frac{4x^{2}}{36} and \frac{25\times 9}{36} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4x^{2}-225}{36}}{\frac{4}{x}-\frac{x}{5}}
Do the multiplications in 4x^{2}-25\times 9.
\frac{\frac{4x^{2}-225}{36}}{\frac{4\times 5}{5x}-\frac{xx}{5x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and 5 is 5x. Multiply \frac{4}{x} times \frac{5}{5}. Multiply \frac{x}{5} times \frac{x}{x}.
\frac{\frac{4x^{2}-225}{36}}{\frac{4\times 5-xx}{5x}}
Since \frac{4\times 5}{5x} and \frac{xx}{5x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4x^{2}-225}{36}}{\frac{20-x^{2}}{5x}}
Do the multiplications in 4\times 5-xx.
\frac{\left(4x^{2}-225\right)\times 5x}{36\left(20-x^{2}\right)}
Divide \frac{4x^{2}-225}{36} by \frac{20-x^{2}}{5x} by multiplying \frac{4x^{2}-225}{36} by the reciprocal of \frac{20-x^{2}}{5x}.
\frac{\left(20x^{2}-1125\right)x}{36\left(20-x^{2}\right)}
Use the distributive property to multiply 4x^{2}-225 by 5.
\frac{20x^{3}-1125x}{36\left(20-x^{2}\right)}
Use the distributive property to multiply 20x^{2}-1125 by x.
\frac{20x^{3}-1125x}{720-36x^{2}}
Use the distributive property to multiply 36 by 20-x^{2}.
\frac{\frac{4x^{2}}{36}-\frac{25\times 9}{36}}{\frac{4}{x}-\frac{x}{5}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 9 and 4 is 36. Multiply \frac{x^{2}}{9} times \frac{4}{4}. Multiply \frac{25}{4} times \frac{9}{9}.
\frac{\frac{4x^{2}-25\times 9}{36}}{\frac{4}{x}-\frac{x}{5}}
Since \frac{4x^{2}}{36} and \frac{25\times 9}{36} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4x^{2}-225}{36}}{\frac{4}{x}-\frac{x}{5}}
Do the multiplications in 4x^{2}-25\times 9.
\frac{\frac{4x^{2}-225}{36}}{\frac{4\times 5}{5x}-\frac{xx}{5x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and 5 is 5x. Multiply \frac{4}{x} times \frac{5}{5}. Multiply \frac{x}{5} times \frac{x}{x}.
\frac{\frac{4x^{2}-225}{36}}{\frac{4\times 5-xx}{5x}}
Since \frac{4\times 5}{5x} and \frac{xx}{5x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4x^{2}-225}{36}}{\frac{20-x^{2}}{5x}}
Do the multiplications in 4\times 5-xx.
\frac{\left(4x^{2}-225\right)\times 5x}{36\left(20-x^{2}\right)}
Divide \frac{4x^{2}-225}{36} by \frac{20-x^{2}}{5x} by multiplying \frac{4x^{2}-225}{36} by the reciprocal of \frac{20-x^{2}}{5x}.
\frac{\left(20x^{2}-1125\right)x}{36\left(20-x^{2}\right)}
Use the distributive property to multiply 4x^{2}-225 by 5.
\frac{20x^{3}-1125x}{36\left(20-x^{2}\right)}
Use the distributive property to multiply 20x^{2}-1125 by x.
\frac{20x^{3}-1125x}{720-36x^{2}}
Use the distributive property to multiply 36 by 20-x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}