Evaluate
\frac{4x^{2}}{y\left(x-y\right)}
Expand
\frac{4x^{2}}{y\left(x-y\right)}
Share
Copied to clipboard
\frac{\frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}}{\frac{x+y}{x}-\frac{x+2y}{x+y}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-y and x+y is \left(x+y\right)\left(x-y\right). Multiply \frac{x+y}{x-y} times \frac{x+y}{x+y}. Multiply \frac{x-y}{x+y} times \frac{x-y}{x-y}.
\frac{\frac{\left(x+y\right)\left(x+y\right)-\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}}{\frac{x+y}{x}-\frac{x+2y}{x+y}}
Since \frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)} and \frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}+xy+xy+y^{2}-x^{2}+xy+xy-y^{2}}{\left(x+y\right)\left(x-y\right)}}{\frac{x+y}{x}-\frac{x+2y}{x+y}}
Do the multiplications in \left(x+y\right)\left(x+y\right)-\left(x-y\right)\left(x-y\right).
\frac{\frac{4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{x+y}{x}-\frac{x+2y}{x+y}}
Combine like terms in x^{2}+xy+xy+y^{2}-x^{2}+xy+xy-y^{2}.
\frac{\frac{4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{\left(x+y\right)\left(x+y\right)}{x\left(x+y\right)}-\frac{\left(x+2y\right)x}{x\left(x+y\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and x+y is x\left(x+y\right). Multiply \frac{x+y}{x} times \frac{x+y}{x+y}. Multiply \frac{x+2y}{x+y} times \frac{x}{x}.
\frac{\frac{4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{\left(x+y\right)\left(x+y\right)-\left(x+2y\right)x}{x\left(x+y\right)}}
Since \frac{\left(x+y\right)\left(x+y\right)}{x\left(x+y\right)} and \frac{\left(x+2y\right)x}{x\left(x+y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{x^{2}+xy+xy+y^{2}-x^{2}-2yx}{x\left(x+y\right)}}
Do the multiplications in \left(x+y\right)\left(x+y\right)-\left(x+2y\right)x.
\frac{\frac{4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{y^{2}}{x\left(x+y\right)}}
Combine like terms in x^{2}+xy+xy+y^{2}-x^{2}-2yx.
\frac{4xyx\left(x+y\right)}{\left(x+y\right)\left(x-y\right)y^{2}}
Divide \frac{4xy}{\left(x+y\right)\left(x-y\right)} by \frac{y^{2}}{x\left(x+y\right)} by multiplying \frac{4xy}{\left(x+y\right)\left(x-y\right)} by the reciprocal of \frac{y^{2}}{x\left(x+y\right)}.
\frac{4xx}{y\left(x-y\right)}
Cancel out y\left(x+y\right) in both numerator and denominator.
\frac{4x^{2}}{y\left(x-y\right)}
Multiply x and x to get x^{2}.
\frac{4x^{2}}{yx-y^{2}}
Use the distributive property to multiply y by x-y.
\frac{\frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}}{\frac{x+y}{x}-\frac{x+2y}{x+y}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-y and x+y is \left(x+y\right)\left(x-y\right). Multiply \frac{x+y}{x-y} times \frac{x+y}{x+y}. Multiply \frac{x-y}{x+y} times \frac{x-y}{x-y}.
\frac{\frac{\left(x+y\right)\left(x+y\right)-\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}}{\frac{x+y}{x}-\frac{x+2y}{x+y}}
Since \frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)} and \frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}+xy+xy+y^{2}-x^{2}+xy+xy-y^{2}}{\left(x+y\right)\left(x-y\right)}}{\frac{x+y}{x}-\frac{x+2y}{x+y}}
Do the multiplications in \left(x+y\right)\left(x+y\right)-\left(x-y\right)\left(x-y\right).
\frac{\frac{4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{x+y}{x}-\frac{x+2y}{x+y}}
Combine like terms in x^{2}+xy+xy+y^{2}-x^{2}+xy+xy-y^{2}.
\frac{\frac{4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{\left(x+y\right)\left(x+y\right)}{x\left(x+y\right)}-\frac{\left(x+2y\right)x}{x\left(x+y\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and x+y is x\left(x+y\right). Multiply \frac{x+y}{x} times \frac{x+y}{x+y}. Multiply \frac{x+2y}{x+y} times \frac{x}{x}.
\frac{\frac{4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{\left(x+y\right)\left(x+y\right)-\left(x+2y\right)x}{x\left(x+y\right)}}
Since \frac{\left(x+y\right)\left(x+y\right)}{x\left(x+y\right)} and \frac{\left(x+2y\right)x}{x\left(x+y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{x^{2}+xy+xy+y^{2}-x^{2}-2yx}{x\left(x+y\right)}}
Do the multiplications in \left(x+y\right)\left(x+y\right)-\left(x+2y\right)x.
\frac{\frac{4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{y^{2}}{x\left(x+y\right)}}
Combine like terms in x^{2}+xy+xy+y^{2}-x^{2}-2yx.
\frac{4xyx\left(x+y\right)}{\left(x+y\right)\left(x-y\right)y^{2}}
Divide \frac{4xy}{\left(x+y\right)\left(x-y\right)} by \frac{y^{2}}{x\left(x+y\right)} by multiplying \frac{4xy}{\left(x+y\right)\left(x-y\right)} by the reciprocal of \frac{y^{2}}{x\left(x+y\right)}.
\frac{4xx}{y\left(x-y\right)}
Cancel out y\left(x+y\right) in both numerator and denominator.
\frac{4x^{2}}{y\left(x-y\right)}
Multiply x and x to get x^{2}.
\frac{4x^{2}}{yx-y^{2}}
Use the distributive property to multiply y by x-y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}