Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6\left(x-1\right)^{-1}\times \frac{x+1}{2}-6\left(x+1\right)^{-1}\times \frac{x-1}{2}=2\times 3+2
Multiply both sides of the equation by 3.
3\left(x+1\right)\left(x-1\right)^{-1}-6\left(x+1\right)^{-1}\times \frac{x-1}{2}=2\times 3+2
Cancel out 2, the greatest common factor in 6 and 2.
3\left(x+1\right)\left(x-1\right)^{-1}-3\left(x-1\right)\left(x+1\right)^{-1}=2\times 3+2
Cancel out 2, the greatest common factor in 6 and 2.
3\left(x+1\right)\left(x-1\right)^{-1}-3\left(x-1\right)\left(x+1\right)^{-1}=6+2
Multiply 2 and 3 to get 6.
3\left(x+1\right)\left(x-1\right)^{-1}-3\left(x-1\right)\left(x+1\right)^{-1}=8
Add 6 and 2 to get 8.
\left(3x+3\right)\left(x-1\right)^{-1}-3\left(x-1\right)\left(x+1\right)^{-1}=8
Use the distributive property to multiply 3 by x+1.
3x\left(x-1\right)^{-1}+3\left(x-1\right)^{-1}-3\left(x-1\right)\left(x+1\right)^{-1}=8
Use the distributive property to multiply 3x+3 by \left(x-1\right)^{-1}.
3x\left(x-1\right)^{-1}+3\left(x-1\right)^{-1}-\left(3x-3\right)\left(x+1\right)^{-1}=8
Use the distributive property to multiply 3 by x-1.
3x\left(x-1\right)^{-1}+3\left(x-1\right)^{-1}-\left(3x\left(x+1\right)^{-1}-3\left(x+1\right)^{-1}\right)=8
Use the distributive property to multiply 3x-3 by \left(x+1\right)^{-1}.
3x\left(x-1\right)^{-1}+3\left(x-1\right)^{-1}-3x\left(x+1\right)^{-1}+3\left(x+1\right)^{-1}=8
To find the opposite of 3x\left(x+1\right)^{-1}-3\left(x+1\right)^{-1}, find the opposite of each term.
3x\left(x-1\right)^{-1}+3\left(x-1\right)^{-1}-3x\left(x+1\right)^{-1}+3\left(x+1\right)^{-1}-8=0
Subtract 8 from both sides.
3\times \frac{1}{x-1}x-3\times \frac{1}{x+1}x-8+3\times \frac{1}{x+1}+3\times \frac{1}{x-1}=0
Reorder the terms.
3\left(x+1\right)\times 1x-3\left(x-1\right)x+\left(x-1\right)\left(x+1\right)\left(-8\right)+3\left(x-1\right)\times 1+3\left(x+1\right)\times 1=0
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right), the least common multiple of x-1,x+1.
3\left(x+1\right)x-3\left(x-1\right)x+\left(x-1\right)\left(x+1\right)\left(-8\right)+3\left(x-1\right)\times 1+3\left(x+1\right)\times 1=0
Multiply 3 and 1 to get 3.
\left(3x+3\right)x-3\left(x-1\right)x+\left(x-1\right)\left(x+1\right)\left(-8\right)+3\left(x-1\right)\times 1+3\left(x+1\right)\times 1=0
Use the distributive property to multiply 3 by x+1.
3x^{2}+3x-3\left(x-1\right)x+\left(x-1\right)\left(x+1\right)\left(-8\right)+3\left(x-1\right)\times 1+3\left(x+1\right)\times 1=0
Use the distributive property to multiply 3x+3 by x.
3x^{2}+3x+\left(-3x+3\right)x+\left(x-1\right)\left(x+1\right)\left(-8\right)+3\left(x-1\right)\times 1+3\left(x+1\right)\times 1=0
Use the distributive property to multiply -3 by x-1.
3x^{2}+3x-3x^{2}+3x+\left(x-1\right)\left(x+1\right)\left(-8\right)+3\left(x-1\right)\times 1+3\left(x+1\right)\times 1=0
Use the distributive property to multiply -3x+3 by x.
3x+3x+\left(x-1\right)\left(x+1\right)\left(-8\right)+3\left(x-1\right)\times 1+3\left(x+1\right)\times 1=0
Combine 3x^{2} and -3x^{2} to get 0.
6x+\left(x-1\right)\left(x+1\right)\left(-8\right)+3\left(x-1\right)\times 1+3\left(x+1\right)\times 1=0
Combine 3x and 3x to get 6x.
6x+\left(x^{2}-1\right)\left(-8\right)+3\left(x-1\right)\times 1+3\left(x+1\right)\times 1=0
Use the distributive property to multiply x-1 by x+1 and combine like terms.
6x-8x^{2}+8+3\left(x-1\right)\times 1+3\left(x+1\right)\times 1=0
Use the distributive property to multiply x^{2}-1 by -8.
6x-8x^{2}+8+3\left(x-1\right)+3\left(x+1\right)\times 1=0
Multiply 3 and 1 to get 3.
6x-8x^{2}+8+3x-3+3\left(x+1\right)\times 1=0
Use the distributive property to multiply 3 by x-1.
9x-8x^{2}+8-3+3\left(x+1\right)\times 1=0
Combine 6x and 3x to get 9x.
9x-8x^{2}+5+3\left(x+1\right)\times 1=0
Subtract 3 from 8 to get 5.
9x-8x^{2}+5+3\left(x+1\right)=0
Multiply 3 and 1 to get 3.
9x-8x^{2}+5+3x+3=0
Use the distributive property to multiply 3 by x+1.
12x-8x^{2}+5+3=0
Combine 9x and 3x to get 12x.
12x-8x^{2}+8=0
Add 5 and 3 to get 8.
-8x^{2}+12x+8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{12^{2}-4\left(-8\right)\times 8}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, 12 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-8\right)\times 8}}{2\left(-8\right)}
Square 12.
x=\frac{-12±\sqrt{144+32\times 8}}{2\left(-8\right)}
Multiply -4 times -8.
x=\frac{-12±\sqrt{144+256}}{2\left(-8\right)}
Multiply 32 times 8.
x=\frac{-12±\sqrt{400}}{2\left(-8\right)}
Add 144 to 256.
x=\frac{-12±20}{2\left(-8\right)}
Take the square root of 400.
x=\frac{-12±20}{-16}
Multiply 2 times -8.
x=\frac{8}{-16}
Now solve the equation x=\frac{-12±20}{-16} when ± is plus. Add -12 to 20.
x=-\frac{1}{2}
Reduce the fraction \frac{8}{-16} to lowest terms by extracting and canceling out 8.
x=-\frac{32}{-16}
Now solve the equation x=\frac{-12±20}{-16} when ± is minus. Subtract 20 from -12.
x=2
Divide -32 by -16.
x=-\frac{1}{2} x=2
The equation is now solved.
6\left(x-1\right)^{-1}\times \frac{x+1}{2}-6\left(x+1\right)^{-1}\times \frac{x-1}{2}=2\times 3+2
Multiply both sides of the equation by 3.
3\left(x+1\right)\left(x-1\right)^{-1}-6\left(x+1\right)^{-1}\times \frac{x-1}{2}=2\times 3+2
Cancel out 2, the greatest common factor in 6 and 2.
3\left(x+1\right)\left(x-1\right)^{-1}-3\left(x-1\right)\left(x+1\right)^{-1}=2\times 3+2
Cancel out 2, the greatest common factor in 6 and 2.
3\left(x+1\right)\left(x-1\right)^{-1}-3\left(x-1\right)\left(x+1\right)^{-1}=6+2
Multiply 2 and 3 to get 6.
3\left(x+1\right)\left(x-1\right)^{-1}-3\left(x-1\right)\left(x+1\right)^{-1}=8
Add 6 and 2 to get 8.
\left(3x+3\right)\left(x-1\right)^{-1}-3\left(x-1\right)\left(x+1\right)^{-1}=8
Use the distributive property to multiply 3 by x+1.
3x\left(x-1\right)^{-1}+3\left(x-1\right)^{-1}-3\left(x-1\right)\left(x+1\right)^{-1}=8
Use the distributive property to multiply 3x+3 by \left(x-1\right)^{-1}.
3x\left(x-1\right)^{-1}+3\left(x-1\right)^{-1}-\left(3x-3\right)\left(x+1\right)^{-1}=8
Use the distributive property to multiply 3 by x-1.
3x\left(x-1\right)^{-1}+3\left(x-1\right)^{-1}-\left(3x\left(x+1\right)^{-1}-3\left(x+1\right)^{-1}\right)=8
Use the distributive property to multiply 3x-3 by \left(x+1\right)^{-1}.
3x\left(x-1\right)^{-1}+3\left(x-1\right)^{-1}-3x\left(x+1\right)^{-1}+3\left(x+1\right)^{-1}=8
To find the opposite of 3x\left(x+1\right)^{-1}-3\left(x+1\right)^{-1}, find the opposite of each term.
3\times \frac{1}{x-1}x-3\times \frac{1}{x+1}x+3\times \frac{1}{x+1}+3\times \frac{1}{x-1}=8
Reorder the terms.
3\left(x+1\right)\times 1x-3\left(x-1\right)x+3\left(x-1\right)\times 1+3\left(x+1\right)\times 1=8\left(x-1\right)\left(x+1\right)
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right), the least common multiple of x-1,x+1.
3\left(x+1\right)x-3\left(x-1\right)x+3\left(x-1\right)\times 1+3\left(x+1\right)\times 1=8\left(x-1\right)\left(x+1\right)
Multiply 3 and 1 to get 3.
\left(3x+3\right)x-3\left(x-1\right)x+3\left(x-1\right)\times 1+3\left(x+1\right)\times 1=8\left(x-1\right)\left(x+1\right)
Use the distributive property to multiply 3 by x+1.
3x^{2}+3x-3\left(x-1\right)x+3\left(x-1\right)\times 1+3\left(x+1\right)\times 1=8\left(x-1\right)\left(x+1\right)
Use the distributive property to multiply 3x+3 by x.
3x^{2}+3x+\left(-3x+3\right)x+3\left(x-1\right)\times 1+3\left(x+1\right)\times 1=8\left(x-1\right)\left(x+1\right)
Use the distributive property to multiply -3 by x-1.
3x^{2}+3x-3x^{2}+3x+3\left(x-1\right)\times 1+3\left(x+1\right)\times 1=8\left(x-1\right)\left(x+1\right)
Use the distributive property to multiply -3x+3 by x.
3x+3x+3\left(x-1\right)\times 1+3\left(x+1\right)\times 1=8\left(x-1\right)\left(x+1\right)
Combine 3x^{2} and -3x^{2} to get 0.
6x+3\left(x-1\right)\times 1+3\left(x+1\right)\times 1=8\left(x-1\right)\left(x+1\right)
Combine 3x and 3x to get 6x.
6x+3\left(x-1\right)+3\left(x+1\right)\times 1=8\left(x-1\right)\left(x+1\right)
Multiply 3 and 1 to get 3.
6x+3x-3+3\left(x+1\right)\times 1=8\left(x-1\right)\left(x+1\right)
Use the distributive property to multiply 3 by x-1.
9x-3+3\left(x+1\right)\times 1=8\left(x-1\right)\left(x+1\right)
Combine 6x and 3x to get 9x.
9x-3+3\left(x+1\right)=8\left(x-1\right)\left(x+1\right)
Multiply 3 and 1 to get 3.
9x-3+3x+3=8\left(x-1\right)\left(x+1\right)
Use the distributive property to multiply 3 by x+1.
12x-3+3=8\left(x-1\right)\left(x+1\right)
Combine 9x and 3x to get 12x.
12x=8\left(x-1\right)\left(x+1\right)
Add -3 and 3 to get 0.
12x=\left(8x-8\right)\left(x+1\right)
Use the distributive property to multiply 8 by x-1.
12x=8x^{2}-8
Use the distributive property to multiply 8x-8 by x+1 and combine like terms.
12x-8x^{2}=-8
Subtract 8x^{2} from both sides.
-8x^{2}+12x=-8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-8x^{2}+12x}{-8}=-\frac{8}{-8}
Divide both sides by -8.
x^{2}+\frac{12}{-8}x=-\frac{8}{-8}
Dividing by -8 undoes the multiplication by -8.
x^{2}-\frac{3}{2}x=-\frac{8}{-8}
Reduce the fraction \frac{12}{-8} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{3}{2}x=1
Divide -8 by -8.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=1+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=1+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{25}{16}
Add 1 to \frac{9}{16}.
\left(x-\frac{3}{4}\right)^{2}=\frac{25}{16}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{5}{4} x-\frac{3}{4}=-\frac{5}{4}
Simplify.
x=2 x=-\frac{1}{2}
Add \frac{3}{4} to both sides of the equation.