Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{\left(t+h+1\right)\left(t+4\right)}{\left(t+4\right)\left(t+h+4\right)}-\frac{\left(t+1\right)\left(t+h+4\right)}{\left(t+4\right)\left(t+h+4\right)}}{h}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of t+h+4 and t+4 is \left(t+4\right)\left(t+h+4\right). Multiply \frac{t+h+1}{t+h+4} times \frac{t+4}{t+4}. Multiply \frac{t+1}{t+4} times \frac{t+h+4}{t+h+4}.
\frac{\frac{\left(t+h+1\right)\left(t+4\right)-\left(t+1\right)\left(t+h+4\right)}{\left(t+4\right)\left(t+h+4\right)}}{h}
Since \frac{\left(t+h+1\right)\left(t+4\right)}{\left(t+4\right)\left(t+h+4\right)} and \frac{\left(t+1\right)\left(t+h+4\right)}{\left(t+4\right)\left(t+h+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{t^{2}+4t+ht+4h+t+4-t^{2}-th-4t-t-h-4}{\left(t+4\right)\left(t+h+4\right)}}{h}
Do the multiplications in \left(t+h+1\right)\left(t+4\right)-\left(t+1\right)\left(t+h+4\right).
\frac{\frac{3h}{\left(t+4\right)\left(t+h+4\right)}}{h}
Combine like terms in t^{2}+4t+ht+4h+t+4-t^{2}-th-4t-t-h-4.
\frac{3h}{\left(t+4\right)\left(t+h+4\right)h}
Express \frac{\frac{3h}{\left(t+4\right)\left(t+h+4\right)}}{h} as a single fraction.
\frac{3}{\left(t+4\right)\left(t+h+4\right)}
Cancel out h in both numerator and denominator.
\frac{3}{t^{2}+th+4t+4t+4h+16}
Apply the distributive property by multiplying each term of t+4 by each term of t+h+4.
\frac{3}{t^{2}+th+8t+4h+16}
Combine 4t and 4t to get 8t.
\frac{\frac{\left(t+h+1\right)\left(t+4\right)}{\left(t+4\right)\left(t+h+4\right)}-\frac{\left(t+1\right)\left(t+h+4\right)}{\left(t+4\right)\left(t+h+4\right)}}{h}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of t+h+4 and t+4 is \left(t+4\right)\left(t+h+4\right). Multiply \frac{t+h+1}{t+h+4} times \frac{t+4}{t+4}. Multiply \frac{t+1}{t+4} times \frac{t+h+4}{t+h+4}.
\frac{\frac{\left(t+h+1\right)\left(t+4\right)-\left(t+1\right)\left(t+h+4\right)}{\left(t+4\right)\left(t+h+4\right)}}{h}
Since \frac{\left(t+h+1\right)\left(t+4\right)}{\left(t+4\right)\left(t+h+4\right)} and \frac{\left(t+1\right)\left(t+h+4\right)}{\left(t+4\right)\left(t+h+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{t^{2}+4t+ht+4h+t+4-t^{2}-th-4t-t-h-4}{\left(t+4\right)\left(t+h+4\right)}}{h}
Do the multiplications in \left(t+h+1\right)\left(t+4\right)-\left(t+1\right)\left(t+h+4\right).
\frac{\frac{3h}{\left(t+4\right)\left(t+h+4\right)}}{h}
Combine like terms in t^{2}+4t+ht+4h+t+4-t^{2}-th-4t-t-h-4.
\frac{3h}{\left(t+4\right)\left(t+h+4\right)h}
Express \frac{\frac{3h}{\left(t+4\right)\left(t+h+4\right)}}{h} as a single fraction.
\frac{3}{\left(t+4\right)\left(t+h+4\right)}
Cancel out h in both numerator and denominator.
\frac{3}{t^{2}+th+4t+4t+4h+16}
Apply the distributive property by multiplying each term of t+4 by each term of t+h+4.
\frac{3}{t^{2}+th+8t+4h+16}
Combine 4t and 4t to get 8t.