Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\frac{a\left(a+2\right)}{\left(a^{2}-4\right)a^{2}}
Divide \frac{a}{a^{2}-4} by \frac{a^{2}}{a+2} by multiplying \frac{a}{a^{2}-4} by the reciprocal of \frac{a^{2}}{a+2}.
\frac{a+2}{a\left(a^{2}-4\right)}
Cancel out a in both numerator and denominator.
\frac{a+2}{a\left(a-2\right)\left(a+2\right)}
Factor the expressions that are not already factored.
\frac{1}{a\left(a-2\right)}
Cancel out a+2 in both numerator and denominator.
\frac{1}{a^{2}-2a}
Expand the expression.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a\left(a+2\right)}{\left(a^{2}-4\right)a^{2}})
Divide \frac{a}{a^{2}-4} by \frac{a^{2}}{a+2} by multiplying \frac{a}{a^{2}-4} by the reciprocal of \frac{a^{2}}{a+2}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a+2}{a\left(a^{2}-4\right)})
Cancel out a in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a+2}{a\left(a-2\right)\left(a+2\right)})
Factor the expressions that are not already factored in \frac{a+2}{a\left(a^{2}-4\right)}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a\left(a-2\right)})
Cancel out a+2 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a^{2}-2a})
Use the distributive property to multiply a by a-2.
-\left(a^{2}-2a^{1}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}a}(a^{2}-2a^{1})
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(a^{2}-2a^{1}\right)^{-2}\left(2a^{2-1}-2a^{1-1}\right)
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\left(a^{2}-2a^{1}\right)^{-2}\left(-2a^{1}+2a^{0}\right)
Simplify.
\left(a^{2}-2a\right)^{-2}\left(-2a+2a^{0}\right)
For any term t, t^{1}=t.
\left(a^{2}-2a\right)^{-2}\left(-2a+2\times 1\right)
For any term t except 0, t^{0}=1.
\left(a^{2}-2a\right)^{-2}\left(-2a+2\right)
For any term t, t\times 1=t and 1t=t.