Evaluate
\frac{3a+8b}{15b^{2}-2}
b\neq 0\text{ and }|b|\neq \frac{\sqrt{30}}{15}
Expand
\frac{3a+8b}{15b^{2}-2}
b\neq 0\text{ and }|b|\neq \frac{\sqrt{30}}{15}
Share
Copied to clipboard
\frac{\frac{3a}{18b^{3}}+\frac{4\times 2b}{18b^{3}}}{\frac{5}{6b}-\frac{1}{9b^{3}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6b^{3} and 9b^{2} is 18b^{3}. Multiply \frac{a}{6b^{3}} times \frac{3}{3}. Multiply \frac{4}{9b^{2}} times \frac{2b}{2b}.
\frac{\frac{3a+4\times 2b}{18b^{3}}}{\frac{5}{6b}-\frac{1}{9b^{3}}}
Since \frac{3a}{18b^{3}} and \frac{4\times 2b}{18b^{3}} have the same denominator, add them by adding their numerators.
\frac{\frac{3a+8b}{18b^{3}}}{\frac{5}{6b}-\frac{1}{9b^{3}}}
Do the multiplications in 3a+4\times 2b.
\frac{\frac{3a+8b}{18b^{3}}}{\frac{5\times 3b^{2}}{18b^{3}}-\frac{2}{18b^{3}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6b and 9b^{3} is 18b^{3}. Multiply \frac{5}{6b} times \frac{3b^{2}}{3b^{2}}. Multiply \frac{1}{9b^{3}} times \frac{2}{2}.
\frac{\frac{3a+8b}{18b^{3}}}{\frac{5\times 3b^{2}-2}{18b^{3}}}
Since \frac{5\times 3b^{2}}{18b^{3}} and \frac{2}{18b^{3}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3a+8b}{18b^{3}}}{\frac{15b^{2}-2}{18b^{3}}}
Do the multiplications in 5\times 3b^{2}-2.
\frac{\left(3a+8b\right)\times 18b^{3}}{18b^{3}\left(15b^{2}-2\right)}
Divide \frac{3a+8b}{18b^{3}} by \frac{15b^{2}-2}{18b^{3}} by multiplying \frac{3a+8b}{18b^{3}} by the reciprocal of \frac{15b^{2}-2}{18b^{3}}.
\frac{3a+8b}{15b^{2}-2}
Cancel out 18b^{3} in both numerator and denominator.
\frac{\frac{3a}{18b^{3}}+\frac{4\times 2b}{18b^{3}}}{\frac{5}{6b}-\frac{1}{9b^{3}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6b^{3} and 9b^{2} is 18b^{3}. Multiply \frac{a}{6b^{3}} times \frac{3}{3}. Multiply \frac{4}{9b^{2}} times \frac{2b}{2b}.
\frac{\frac{3a+4\times 2b}{18b^{3}}}{\frac{5}{6b}-\frac{1}{9b^{3}}}
Since \frac{3a}{18b^{3}} and \frac{4\times 2b}{18b^{3}} have the same denominator, add them by adding their numerators.
\frac{\frac{3a+8b}{18b^{3}}}{\frac{5}{6b}-\frac{1}{9b^{3}}}
Do the multiplications in 3a+4\times 2b.
\frac{\frac{3a+8b}{18b^{3}}}{\frac{5\times 3b^{2}}{18b^{3}}-\frac{2}{18b^{3}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6b and 9b^{3} is 18b^{3}. Multiply \frac{5}{6b} times \frac{3b^{2}}{3b^{2}}. Multiply \frac{1}{9b^{3}} times \frac{2}{2}.
\frac{\frac{3a+8b}{18b^{3}}}{\frac{5\times 3b^{2}-2}{18b^{3}}}
Since \frac{5\times 3b^{2}}{18b^{3}} and \frac{2}{18b^{3}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3a+8b}{18b^{3}}}{\frac{15b^{2}-2}{18b^{3}}}
Do the multiplications in 5\times 3b^{2}-2.
\frac{\left(3a+8b\right)\times 18b^{3}}{18b^{3}\left(15b^{2}-2\right)}
Divide \frac{3a+8b}{18b^{3}} by \frac{15b^{2}-2}{18b^{3}} by multiplying \frac{3a+8b}{18b^{3}} by the reciprocal of \frac{15b^{2}-2}{18b^{3}}.
\frac{3a+8b}{15b^{2}-2}
Cancel out 18b^{3} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}