Evaluate
\frac{\left(a+1\right)a^{2}\left(a^{2}-3a+4\right)}{16\left(a^{2}+a-1\right)}
Expand
\frac{a^{5}-2a^{4}+a^{3}+4a^{2}}{16\left(a^{2}+a-1\right)}
Share
Copied to clipboard
\frac{\frac{\left(a^{2}-a\right)\left(a-1\right)}{4\left(a-1\right)}+\frac{4}{4\left(a-1\right)}}{\frac{4}{a-1}+\frac{4}{a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and a-1 is 4\left(a-1\right). Multiply \frac{a^{2}-a}{4} times \frac{a-1}{a-1}. Multiply \frac{1}{a-1} times \frac{4}{4}.
\frac{\frac{\left(a^{2}-a\right)\left(a-1\right)+4}{4\left(a-1\right)}}{\frac{4}{a-1}+\frac{4}{a^{2}}}
Since \frac{\left(a^{2}-a\right)\left(a-1\right)}{4\left(a-1\right)} and \frac{4}{4\left(a-1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{a^{3}-a^{2}-a^{2}+a+4}{4\left(a-1\right)}}{\frac{4}{a-1}+\frac{4}{a^{2}}}
Do the multiplications in \left(a^{2}-a\right)\left(a-1\right)+4.
\frac{\frac{a^{3}-2a^{2}+a+4}{4\left(a-1\right)}}{\frac{4}{a-1}+\frac{4}{a^{2}}}
Combine like terms in a^{3}-a^{2}-a^{2}+a+4.
\frac{\frac{a^{3}-2a^{2}+a+4}{4\left(a-1\right)}}{\frac{4a^{2}}{\left(a-1\right)a^{2}}+\frac{4\left(a-1\right)}{\left(a-1\right)a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-1 and a^{2} is \left(a-1\right)a^{2}. Multiply \frac{4}{a-1} times \frac{a^{2}}{a^{2}}. Multiply \frac{4}{a^{2}} times \frac{a-1}{a-1}.
\frac{\frac{a^{3}-2a^{2}+a+4}{4\left(a-1\right)}}{\frac{4a^{2}+4\left(a-1\right)}{\left(a-1\right)a^{2}}}
Since \frac{4a^{2}}{\left(a-1\right)a^{2}} and \frac{4\left(a-1\right)}{\left(a-1\right)a^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{a^{3}-2a^{2}+a+4}{4\left(a-1\right)}}{\frac{4a^{2}+4a-4}{\left(a-1\right)a^{2}}}
Do the multiplications in 4a^{2}+4\left(a-1\right).
\frac{\left(a^{3}-2a^{2}+a+4\right)\left(a-1\right)a^{2}}{4\left(a-1\right)\left(4a^{2}+4a-4\right)}
Divide \frac{a^{3}-2a^{2}+a+4}{4\left(a-1\right)} by \frac{4a^{2}+4a-4}{\left(a-1\right)a^{2}} by multiplying \frac{a^{3}-2a^{2}+a+4}{4\left(a-1\right)} by the reciprocal of \frac{4a^{2}+4a-4}{\left(a-1\right)a^{2}}.
\frac{a^{2}\left(a^{3}-2a^{2}+a+4\right)}{4\left(4a^{2}+4a-4\right)}
Cancel out a-1 in both numerator and denominator.
\frac{a^{5}-2a^{4}+a^{3}+4a^{2}}{4\left(4a^{2}+4a-4\right)}
Use the distributive property to multiply a^{2} by a^{3}-2a^{2}+a+4.
\frac{a^{5}-2a^{4}+a^{3}+4a^{2}}{16a^{2}+16a-16}
Use the distributive property to multiply 4 by 4a^{2}+4a-4.
\frac{\frac{\left(a^{2}-a\right)\left(a-1\right)}{4\left(a-1\right)}+\frac{4}{4\left(a-1\right)}}{\frac{4}{a-1}+\frac{4}{a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and a-1 is 4\left(a-1\right). Multiply \frac{a^{2}-a}{4} times \frac{a-1}{a-1}. Multiply \frac{1}{a-1} times \frac{4}{4}.
\frac{\frac{\left(a^{2}-a\right)\left(a-1\right)+4}{4\left(a-1\right)}}{\frac{4}{a-1}+\frac{4}{a^{2}}}
Since \frac{\left(a^{2}-a\right)\left(a-1\right)}{4\left(a-1\right)} and \frac{4}{4\left(a-1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{a^{3}-a^{2}-a^{2}+a+4}{4\left(a-1\right)}}{\frac{4}{a-1}+\frac{4}{a^{2}}}
Do the multiplications in \left(a^{2}-a\right)\left(a-1\right)+4.
\frac{\frac{a^{3}-2a^{2}+a+4}{4\left(a-1\right)}}{\frac{4}{a-1}+\frac{4}{a^{2}}}
Combine like terms in a^{3}-a^{2}-a^{2}+a+4.
\frac{\frac{a^{3}-2a^{2}+a+4}{4\left(a-1\right)}}{\frac{4a^{2}}{\left(a-1\right)a^{2}}+\frac{4\left(a-1\right)}{\left(a-1\right)a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-1 and a^{2} is \left(a-1\right)a^{2}. Multiply \frac{4}{a-1} times \frac{a^{2}}{a^{2}}. Multiply \frac{4}{a^{2}} times \frac{a-1}{a-1}.
\frac{\frac{a^{3}-2a^{2}+a+4}{4\left(a-1\right)}}{\frac{4a^{2}+4\left(a-1\right)}{\left(a-1\right)a^{2}}}
Since \frac{4a^{2}}{\left(a-1\right)a^{2}} and \frac{4\left(a-1\right)}{\left(a-1\right)a^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{a^{3}-2a^{2}+a+4}{4\left(a-1\right)}}{\frac{4a^{2}+4a-4}{\left(a-1\right)a^{2}}}
Do the multiplications in 4a^{2}+4\left(a-1\right).
\frac{\left(a^{3}-2a^{2}+a+4\right)\left(a-1\right)a^{2}}{4\left(a-1\right)\left(4a^{2}+4a-4\right)}
Divide \frac{a^{3}-2a^{2}+a+4}{4\left(a-1\right)} by \frac{4a^{2}+4a-4}{\left(a-1\right)a^{2}} by multiplying \frac{a^{3}-2a^{2}+a+4}{4\left(a-1\right)} by the reciprocal of \frac{4a^{2}+4a-4}{\left(a-1\right)a^{2}}.
\frac{a^{2}\left(a^{3}-2a^{2}+a+4\right)}{4\left(4a^{2}+4a-4\right)}
Cancel out a-1 in both numerator and denominator.
\frac{a^{5}-2a^{4}+a^{3}+4a^{2}}{4\left(4a^{2}+4a-4\right)}
Use the distributive property to multiply a^{2} by a^{3}-2a^{2}+a+4.
\frac{a^{5}-2a^{4}+a^{3}+4a^{2}}{16a^{2}+16a-16}
Use the distributive property to multiply 4 by 4a^{2}+4a-4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}