Evaluate
-\frac{3y}{2}+\frac{4y}{3x}
Expand
-\frac{3y}{2}+\frac{4y}{3x}
Share
Copied to clipboard
\frac{\left(\frac{8}{x}-9\right)y}{6}
Divide \frac{8}{x}-9 by \frac{6}{y} by multiplying \frac{8}{x}-9 by the reciprocal of \frac{6}{y}.
\frac{\left(\frac{8}{x}-\frac{9x}{x}\right)y}{6}
To add or subtract expressions, expand them to make their denominators the same. Multiply 9 times \frac{x}{x}.
\frac{\frac{8-9x}{x}y}{6}
Since \frac{8}{x} and \frac{9x}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\left(8-9x\right)y}{x}}{6}
Express \frac{8-9x}{x}y as a single fraction.
\frac{\left(8-9x\right)y}{x\times 6}
Express \frac{\frac{\left(8-9x\right)y}{x}}{6} as a single fraction.
\frac{8y-9xy}{x\times 6}
Use the distributive property to multiply 8-9x by y.
\frac{\left(\frac{8}{x}-9\right)y}{6}
Divide \frac{8}{x}-9 by \frac{6}{y} by multiplying \frac{8}{x}-9 by the reciprocal of \frac{6}{y}.
\frac{\left(\frac{8}{x}-\frac{9x}{x}\right)y}{6}
To add or subtract expressions, expand them to make their denominators the same. Multiply 9 times \frac{x}{x}.
\frac{\frac{8-9x}{x}y}{6}
Since \frac{8}{x} and \frac{9x}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\left(8-9x\right)y}{x}}{6}
Express \frac{8-9x}{x}y as a single fraction.
\frac{\left(8-9x\right)y}{x\times 6}
Express \frac{\frac{\left(8-9x\right)y}{x}}{6} as a single fraction.
\frac{8y-9xy}{x\times 6}
Use the distributive property to multiply 8-9x by y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}