Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{7\times 2}{10a^{4}}-\frac{a^{3}}{10a^{4}}}{\frac{3}{11a^{2}}+\frac{7}{33a}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5a^{4} and 10a is 10a^{4}. Multiply \frac{7}{5a^{4}} times \frac{2}{2}. Multiply \frac{1}{10a} times \frac{a^{3}}{a^{3}}.
\frac{\frac{7\times 2-a^{3}}{10a^{4}}}{\frac{3}{11a^{2}}+\frac{7}{33a}}
Since \frac{7\times 2}{10a^{4}} and \frac{a^{3}}{10a^{4}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{14-a^{3}}{10a^{4}}}{\frac{3}{11a^{2}}+\frac{7}{33a}}
Do the multiplications in 7\times 2-a^{3}.
\frac{\frac{14-a^{3}}{10a^{4}}}{\frac{3\times 3}{33a^{2}}+\frac{7a}{33a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 11a^{2} and 33a is 33a^{2}. Multiply \frac{3}{11a^{2}} times \frac{3}{3}. Multiply \frac{7}{33a} times \frac{a}{a}.
\frac{\frac{14-a^{3}}{10a^{4}}}{\frac{3\times 3+7a}{33a^{2}}}
Since \frac{3\times 3}{33a^{2}} and \frac{7a}{33a^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{14-a^{3}}{10a^{4}}}{\frac{9+7a}{33a^{2}}}
Do the multiplications in 3\times 3+7a.
\frac{\left(14-a^{3}\right)\times 33a^{2}}{10a^{4}\left(9+7a\right)}
Divide \frac{14-a^{3}}{10a^{4}} by \frac{9+7a}{33a^{2}} by multiplying \frac{14-a^{3}}{10a^{4}} by the reciprocal of \frac{9+7a}{33a^{2}}.
\frac{33\left(-a^{3}+14\right)}{10\left(7a+9\right)a^{2}}
Cancel out a^{2} in both numerator and denominator.
\frac{-33a^{3}+462}{10\left(7a+9\right)a^{2}}
Use the distributive property to multiply 33 by -a^{3}+14.
\frac{-33a^{3}+462}{\left(70a+90\right)a^{2}}
Use the distributive property to multiply 10 by 7a+9.
\frac{-33a^{3}+462}{70a^{3}+90a^{2}}
Use the distributive property to multiply 70a+90 by a^{2}.
\frac{\frac{7\times 2}{10a^{4}}-\frac{a^{3}}{10a^{4}}}{\frac{3}{11a^{2}}+\frac{7}{33a}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5a^{4} and 10a is 10a^{4}. Multiply \frac{7}{5a^{4}} times \frac{2}{2}. Multiply \frac{1}{10a} times \frac{a^{3}}{a^{3}}.
\frac{\frac{7\times 2-a^{3}}{10a^{4}}}{\frac{3}{11a^{2}}+\frac{7}{33a}}
Since \frac{7\times 2}{10a^{4}} and \frac{a^{3}}{10a^{4}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{14-a^{3}}{10a^{4}}}{\frac{3}{11a^{2}}+\frac{7}{33a}}
Do the multiplications in 7\times 2-a^{3}.
\frac{\frac{14-a^{3}}{10a^{4}}}{\frac{3\times 3}{33a^{2}}+\frac{7a}{33a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 11a^{2} and 33a is 33a^{2}. Multiply \frac{3}{11a^{2}} times \frac{3}{3}. Multiply \frac{7}{33a} times \frac{a}{a}.
\frac{\frac{14-a^{3}}{10a^{4}}}{\frac{3\times 3+7a}{33a^{2}}}
Since \frac{3\times 3}{33a^{2}} and \frac{7a}{33a^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{14-a^{3}}{10a^{4}}}{\frac{9+7a}{33a^{2}}}
Do the multiplications in 3\times 3+7a.
\frac{\left(14-a^{3}\right)\times 33a^{2}}{10a^{4}\left(9+7a\right)}
Divide \frac{14-a^{3}}{10a^{4}} by \frac{9+7a}{33a^{2}} by multiplying \frac{14-a^{3}}{10a^{4}} by the reciprocal of \frac{9+7a}{33a^{2}}.
\frac{33\left(-a^{3}+14\right)}{10\left(7a+9\right)a^{2}}
Cancel out a^{2} in both numerator and denominator.
\frac{-33a^{3}+462}{10\left(7a+9\right)a^{2}}
Use the distributive property to multiply 33 by -a^{3}+14.
\frac{-33a^{3}+462}{\left(70a+90\right)a^{2}}
Use the distributive property to multiply 10 by 7a+9.
\frac{-33a^{3}+462}{70a^{3}+90a^{2}}
Use the distributive property to multiply 70a+90 by a^{2}.