Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{5}{8}\times \frac{16}{9}-\frac{1}{5}\times 3-3}{4+\frac{3}{2}\times \frac{4}{5}-1}
Calculate \frac{4}{3} to the power of 2 and get \frac{16}{9}.
\frac{\frac{5\times 16}{8\times 9}-\frac{1}{5}\times 3-3}{4+\frac{3}{2}\times \frac{4}{5}-1}
Multiply \frac{5}{8} times \frac{16}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{80}{72}-\frac{1}{5}\times 3-3}{4+\frac{3}{2}\times \frac{4}{5}-1}
Do the multiplications in the fraction \frac{5\times 16}{8\times 9}.
\frac{\frac{10}{9}-\frac{1}{5}\times 3-3}{4+\frac{3}{2}\times \frac{4}{5}-1}
Reduce the fraction \frac{80}{72} to lowest terms by extracting and canceling out 8.
\frac{\frac{10}{9}-\frac{3}{5}-3}{4+\frac{3}{2}\times \frac{4}{5}-1}
Multiply \frac{1}{5} and 3 to get \frac{3}{5}.
\frac{\frac{50}{45}-\frac{27}{45}-3}{4+\frac{3}{2}\times \frac{4}{5}-1}
Least common multiple of 9 and 5 is 45. Convert \frac{10}{9} and \frac{3}{5} to fractions with denominator 45.
\frac{\frac{50-27}{45}-3}{4+\frac{3}{2}\times \frac{4}{5}-1}
Since \frac{50}{45} and \frac{27}{45} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{23}{45}-3}{4+\frac{3}{2}\times \frac{4}{5}-1}
Subtract 27 from 50 to get 23.
\frac{\frac{23}{45}-\frac{135}{45}}{4+\frac{3}{2}\times \frac{4}{5}-1}
Convert 3 to fraction \frac{135}{45}.
\frac{\frac{23-135}{45}}{4+\frac{3}{2}\times \frac{4}{5}-1}
Since \frac{23}{45} and \frac{135}{45} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{112}{45}}{4+\frac{3}{2}\times \frac{4}{5}-1}
Subtract 135 from 23 to get -112.
\frac{-\frac{112}{45}}{4+\frac{3\times 4}{2\times 5}-1}
Multiply \frac{3}{2} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-\frac{112}{45}}{4+\frac{12}{10}-1}
Do the multiplications in the fraction \frac{3\times 4}{2\times 5}.
\frac{-\frac{112}{45}}{4+\frac{6}{5}-1}
Reduce the fraction \frac{12}{10} to lowest terms by extracting and canceling out 2.
\frac{-\frac{112}{45}}{\frac{20}{5}+\frac{6}{5}-1}
Convert 4 to fraction \frac{20}{5}.
\frac{-\frac{112}{45}}{\frac{20+6}{5}-1}
Since \frac{20}{5} and \frac{6}{5} have the same denominator, add them by adding their numerators.
\frac{-\frac{112}{45}}{\frac{26}{5}-1}
Add 20 and 6 to get 26.
\frac{-\frac{112}{45}}{\frac{26}{5}-\frac{5}{5}}
Convert 1 to fraction \frac{5}{5}.
\frac{-\frac{112}{45}}{\frac{26-5}{5}}
Since \frac{26}{5} and \frac{5}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{112}{45}}{\frac{21}{5}}
Subtract 5 from 26 to get 21.
-\frac{112}{45}\times \frac{5}{21}
Divide -\frac{112}{45} by \frac{21}{5} by multiplying -\frac{112}{45} by the reciprocal of \frac{21}{5}.
\frac{-112\times 5}{45\times 21}
Multiply -\frac{112}{45} times \frac{5}{21} by multiplying numerator times numerator and denominator times denominator.
\frac{-560}{945}
Do the multiplications in the fraction \frac{-112\times 5}{45\times 21}.
-\frac{16}{27}
Reduce the fraction \frac{-560}{945} to lowest terms by extracting and canceling out 35.