Evaluate
-\frac{16}{27}\approx -0.592592593
Factor
-\frac{16}{27} = -0.5925925925925926
Share
Copied to clipboard
\frac{\frac{5}{8}\times \frac{16}{9}-\frac{1}{5}\times 3-3}{4+\frac{3}{2}\times \frac{4}{5}-1}
Calculate \frac{4}{3} to the power of 2 and get \frac{16}{9}.
\frac{\frac{5\times 16}{8\times 9}-\frac{1}{5}\times 3-3}{4+\frac{3}{2}\times \frac{4}{5}-1}
Multiply \frac{5}{8} times \frac{16}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{80}{72}-\frac{1}{5}\times 3-3}{4+\frac{3}{2}\times \frac{4}{5}-1}
Do the multiplications in the fraction \frac{5\times 16}{8\times 9}.
\frac{\frac{10}{9}-\frac{1}{5}\times 3-3}{4+\frac{3}{2}\times \frac{4}{5}-1}
Reduce the fraction \frac{80}{72} to lowest terms by extracting and canceling out 8.
\frac{\frac{10}{9}-\frac{3}{5}-3}{4+\frac{3}{2}\times \frac{4}{5}-1}
Multiply \frac{1}{5} and 3 to get \frac{3}{5}.
\frac{\frac{50}{45}-\frac{27}{45}-3}{4+\frac{3}{2}\times \frac{4}{5}-1}
Least common multiple of 9 and 5 is 45. Convert \frac{10}{9} and \frac{3}{5} to fractions with denominator 45.
\frac{\frac{50-27}{45}-3}{4+\frac{3}{2}\times \frac{4}{5}-1}
Since \frac{50}{45} and \frac{27}{45} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{23}{45}-3}{4+\frac{3}{2}\times \frac{4}{5}-1}
Subtract 27 from 50 to get 23.
\frac{\frac{23}{45}-\frac{135}{45}}{4+\frac{3}{2}\times \frac{4}{5}-1}
Convert 3 to fraction \frac{135}{45}.
\frac{\frac{23-135}{45}}{4+\frac{3}{2}\times \frac{4}{5}-1}
Since \frac{23}{45} and \frac{135}{45} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{112}{45}}{4+\frac{3}{2}\times \frac{4}{5}-1}
Subtract 135 from 23 to get -112.
\frac{-\frac{112}{45}}{4+\frac{3\times 4}{2\times 5}-1}
Multiply \frac{3}{2} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-\frac{112}{45}}{4+\frac{12}{10}-1}
Do the multiplications in the fraction \frac{3\times 4}{2\times 5}.
\frac{-\frac{112}{45}}{4+\frac{6}{5}-1}
Reduce the fraction \frac{12}{10} to lowest terms by extracting and canceling out 2.
\frac{-\frac{112}{45}}{\frac{20}{5}+\frac{6}{5}-1}
Convert 4 to fraction \frac{20}{5}.
\frac{-\frac{112}{45}}{\frac{20+6}{5}-1}
Since \frac{20}{5} and \frac{6}{5} have the same denominator, add them by adding their numerators.
\frac{-\frac{112}{45}}{\frac{26}{5}-1}
Add 20 and 6 to get 26.
\frac{-\frac{112}{45}}{\frac{26}{5}-\frac{5}{5}}
Convert 1 to fraction \frac{5}{5}.
\frac{-\frac{112}{45}}{\frac{26-5}{5}}
Since \frac{26}{5} and \frac{5}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{112}{45}}{\frac{21}{5}}
Subtract 5 from 26 to get 21.
-\frac{112}{45}\times \frac{5}{21}
Divide -\frac{112}{45} by \frac{21}{5} by multiplying -\frac{112}{45} by the reciprocal of \frac{21}{5}.
\frac{-112\times 5}{45\times 21}
Multiply -\frac{112}{45} times \frac{5}{21} by multiplying numerator times numerator and denominator times denominator.
\frac{-560}{945}
Do the multiplications in the fraction \frac{-112\times 5}{45\times 21}.
-\frac{16}{27}
Reduce the fraction \frac{-560}{945} to lowest terms by extracting and canceling out 35.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}