Evaluate
\frac{7}{2}=3.5
Factor
\frac{7}{2} = 3\frac{1}{2} = 3.5
Share
Copied to clipboard
\frac{\frac{5}{8}+\frac{2}{8}}{\frac{3}{4}-\frac{1}{2}}
Least common multiple of 8 and 4 is 8. Convert \frac{5}{8} and \frac{1}{4} to fractions with denominator 8.
\frac{\frac{5+2}{8}}{\frac{3}{4}-\frac{1}{2}}
Since \frac{5}{8} and \frac{2}{8} have the same denominator, add them by adding their numerators.
\frac{\frac{7}{8}}{\frac{3}{4}-\frac{1}{2}}
Add 5 and 2 to get 7.
\frac{\frac{7}{8}}{\frac{3}{4}-\frac{2}{4}}
Least common multiple of 4 and 2 is 4. Convert \frac{3}{4} and \frac{1}{2} to fractions with denominator 4.
\frac{\frac{7}{8}}{\frac{3-2}{4}}
Since \frac{3}{4} and \frac{2}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{7}{8}}{\frac{1}{4}}
Subtract 2 from 3 to get 1.
\frac{7}{8}\times 4
Divide \frac{7}{8} by \frac{1}{4} by multiplying \frac{7}{8} by the reciprocal of \frac{1}{4}.
\frac{7\times 4}{8}
Express \frac{7}{8}\times 4 as a single fraction.
\frac{28}{8}
Multiply 7 and 4 to get 28.
\frac{7}{2}
Reduce the fraction \frac{28}{8} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}