Evaluate
-\frac{b}{a}-2
Expand
-\frac{b}{a}-2
Share
Copied to clipboard
\frac{\frac{4a^{2}}{ba^{2}}-\frac{bb}{ba^{2}}}{\frac{1}{a}-\frac{2}{b}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b and a^{2} is ba^{2}. Multiply \frac{4}{b} times \frac{a^{2}}{a^{2}}. Multiply \frac{b}{a^{2}} times \frac{b}{b}.
\frac{\frac{4a^{2}-bb}{ba^{2}}}{\frac{1}{a}-\frac{2}{b}}
Since \frac{4a^{2}}{ba^{2}} and \frac{bb}{ba^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4a^{2}-b^{2}}{ba^{2}}}{\frac{1}{a}-\frac{2}{b}}
Do the multiplications in 4a^{2}-bb.
\frac{\frac{4a^{2}-b^{2}}{ba^{2}}}{\frac{b}{ab}-\frac{2a}{ab}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a and b is ab. Multiply \frac{1}{a} times \frac{b}{b}. Multiply \frac{2}{b} times \frac{a}{a}.
\frac{\frac{4a^{2}-b^{2}}{ba^{2}}}{\frac{b-2a}{ab}}
Since \frac{b}{ab} and \frac{2a}{ab} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(4a^{2}-b^{2}\right)ab}{ba^{2}\left(b-2a\right)}
Divide \frac{4a^{2}-b^{2}}{ba^{2}} by \frac{b-2a}{ab} by multiplying \frac{4a^{2}-b^{2}}{ba^{2}} by the reciprocal of \frac{b-2a}{ab}.
\frac{4a^{2}-b^{2}}{a\left(-2a+b\right)}
Cancel out ab in both numerator and denominator.
\frac{\left(2a+b\right)\left(2a-b\right)}{a\left(-2a+b\right)}
Factor the expressions that are not already factored.
\frac{-\left(-2a+b\right)\left(2a+b\right)}{a\left(-2a+b\right)}
Extract the negative sign in 2a-b.
\frac{-\left(2a+b\right)}{a}
Cancel out -2a+b in both numerator and denominator.
\frac{-2a-b}{a}
Expand the expression.
\frac{\frac{4a^{2}}{ba^{2}}-\frac{bb}{ba^{2}}}{\frac{1}{a}-\frac{2}{b}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b and a^{2} is ba^{2}. Multiply \frac{4}{b} times \frac{a^{2}}{a^{2}}. Multiply \frac{b}{a^{2}} times \frac{b}{b}.
\frac{\frac{4a^{2}-bb}{ba^{2}}}{\frac{1}{a}-\frac{2}{b}}
Since \frac{4a^{2}}{ba^{2}} and \frac{bb}{ba^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4a^{2}-b^{2}}{ba^{2}}}{\frac{1}{a}-\frac{2}{b}}
Do the multiplications in 4a^{2}-bb.
\frac{\frac{4a^{2}-b^{2}}{ba^{2}}}{\frac{b}{ab}-\frac{2a}{ab}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a and b is ab. Multiply \frac{1}{a} times \frac{b}{b}. Multiply \frac{2}{b} times \frac{a}{a}.
\frac{\frac{4a^{2}-b^{2}}{ba^{2}}}{\frac{b-2a}{ab}}
Since \frac{b}{ab} and \frac{2a}{ab} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(4a^{2}-b^{2}\right)ab}{ba^{2}\left(b-2a\right)}
Divide \frac{4a^{2}-b^{2}}{ba^{2}} by \frac{b-2a}{ab} by multiplying \frac{4a^{2}-b^{2}}{ba^{2}} by the reciprocal of \frac{b-2a}{ab}.
\frac{4a^{2}-b^{2}}{a\left(-2a+b\right)}
Cancel out ab in both numerator and denominator.
\frac{\left(2a+b\right)\left(2a-b\right)}{a\left(-2a+b\right)}
Factor the expressions that are not already factored.
\frac{-\left(-2a+b\right)\left(2a+b\right)}{a\left(-2a+b\right)}
Extract the negative sign in 2a-b.
\frac{-\left(2a+b\right)}{a}
Cancel out -2a+b in both numerator and denominator.
\frac{-2a-b}{a}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}