Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{4}{5}\times \frac{4+3}{4}}{\frac{8\times 7+5}{7}+\frac{4\times 5+3}{5}+2}
Multiply 1 and 4 to get 4.
\frac{\frac{4}{5}\times \frac{7}{4}}{\frac{8\times 7+5}{7}+\frac{4\times 5+3}{5}+2}
Add 4 and 3 to get 7.
\frac{\frac{4\times 7}{5\times 4}}{\frac{8\times 7+5}{7}+\frac{4\times 5+3}{5}+2}
Multiply \frac{4}{5} times \frac{7}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{7}{5}}{\frac{8\times 7+5}{7}+\frac{4\times 5+3}{5}+2}
Cancel out 4 in both numerator and denominator.
\frac{\frac{7}{5}}{\frac{56+5}{7}+\frac{4\times 5+3}{5}+2}
Multiply 8 and 7 to get 56.
\frac{\frac{7}{5}}{\frac{61}{7}+\frac{4\times 5+3}{5}+2}
Add 56 and 5 to get 61.
\frac{\frac{7}{5}}{\frac{61}{7}+\frac{20+3}{5}+2}
Multiply 4 and 5 to get 20.
\frac{\frac{7}{5}}{\frac{61}{7}+\frac{23}{5}+2}
Add 20 and 3 to get 23.
\frac{\frac{7}{5}}{\frac{305}{35}+\frac{161}{35}+2}
Least common multiple of 7 and 5 is 35. Convert \frac{61}{7} and \frac{23}{5} to fractions with denominator 35.
\frac{\frac{7}{5}}{\frac{305+161}{35}+2}
Since \frac{305}{35} and \frac{161}{35} have the same denominator, add them by adding their numerators.
\frac{\frac{7}{5}}{\frac{466}{35}+2}
Add 305 and 161 to get 466.
\frac{\frac{7}{5}}{\frac{466}{35}+\frac{70}{35}}
Convert 2 to fraction \frac{70}{35}.
\frac{\frac{7}{5}}{\frac{466+70}{35}}
Since \frac{466}{35} and \frac{70}{35} have the same denominator, add them by adding their numerators.
\frac{\frac{7}{5}}{\frac{536}{35}}
Add 466 and 70 to get 536.
\frac{7}{5}\times \frac{35}{536}
Divide \frac{7}{5} by \frac{536}{35} by multiplying \frac{7}{5} by the reciprocal of \frac{536}{35}.
\frac{7\times 35}{5\times 536}
Multiply \frac{7}{5} times \frac{35}{536} by multiplying numerator times numerator and denominator times denominator.
\frac{245}{2680}
Do the multiplications in the fraction \frac{7\times 35}{5\times 536}.
\frac{49}{536}
Reduce the fraction \frac{245}{2680} to lowest terms by extracting and canceling out 5.