Evaluate
1
Factor
1
Share
Copied to clipboard
\frac{4\left(2-\sqrt{2}\right)}{\left(4-2\sqrt{2}\right)\times 2}
Divide \frac{4}{4-2\sqrt{2}} by \frac{2}{2-\sqrt{2}} by multiplying \frac{4}{4-2\sqrt{2}} by the reciprocal of \frac{2}{2-\sqrt{2}}.
\frac{2\left(-\sqrt{2}+2\right)}{-2\sqrt{2}+4}
Cancel out 2 in both numerator and denominator.
\frac{2\left(-\sqrt{2}+2\right)\left(-2\sqrt{2}-4\right)}{\left(-2\sqrt{2}+4\right)\left(-2\sqrt{2}-4\right)}
Rationalize the denominator of \frac{2\left(-\sqrt{2}+2\right)}{-2\sqrt{2}+4} by multiplying numerator and denominator by -2\sqrt{2}-4.
\frac{2\left(-\sqrt{2}+2\right)\left(-2\sqrt{2}-4\right)}{\left(-2\sqrt{2}\right)^{2}-4^{2}}
Consider \left(-2\sqrt{2}+4\right)\left(-2\sqrt{2}-4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(-\sqrt{2}+2\right)\left(-2\sqrt{2}-4\right)}{\left(-2\right)^{2}\left(\sqrt{2}\right)^{2}-4^{2}}
Expand \left(-2\sqrt{2}\right)^{2}.
\frac{2\left(-\sqrt{2}+2\right)\left(-2\sqrt{2}-4\right)}{4\left(\sqrt{2}\right)^{2}-4^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{2\left(-\sqrt{2}+2\right)\left(-2\sqrt{2}-4\right)}{4\times 2-4^{2}}
The square of \sqrt{2} is 2.
\frac{2\left(-\sqrt{2}+2\right)\left(-2\sqrt{2}-4\right)}{8-4^{2}}
Multiply 4 and 2 to get 8.
\frac{2\left(-\sqrt{2}+2\right)\left(-2\sqrt{2}-4\right)}{8-16}
Calculate 4 to the power of 2 and get 16.
\frac{2\left(-\sqrt{2}+2\right)\left(-2\sqrt{2}-4\right)}{-8}
Subtract 16 from 8 to get -8.
-\frac{1}{4}\left(-\sqrt{2}+2\right)\left(-2\sqrt{2}-4\right)
Divide 2\left(-\sqrt{2}+2\right)\left(-2\sqrt{2}-4\right) by -8 to get -\frac{1}{4}\left(-\sqrt{2}+2\right)\left(-2\sqrt{2}-4\right).
\left(-\frac{1}{4}\left(-1\right)\sqrt{2}-\frac{1}{4}\times 2\right)\left(-2\sqrt{2}-4\right)
Use the distributive property to multiply -\frac{1}{4} by -\sqrt{2}+2.
\left(\frac{1}{4}\sqrt{2}-\frac{1}{4}\times 2\right)\left(-2\sqrt{2}-4\right)
Multiply -\frac{1}{4} and -1 to get \frac{1}{4}.
\left(\frac{1}{4}\sqrt{2}+\frac{-2}{4}\right)\left(-2\sqrt{2}-4\right)
Express -\frac{1}{4}\times 2 as a single fraction.
\left(\frac{1}{4}\sqrt{2}-\frac{1}{2}\right)\left(-2\sqrt{2}-4\right)
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{4}\sqrt{2}\left(-2\right)\sqrt{2}+\frac{1}{4}\sqrt{2}\left(-4\right)-\frac{1}{2}\left(-2\right)\sqrt{2}-\frac{1}{2}\left(-4\right)
Apply the distributive property by multiplying each term of \frac{1}{4}\sqrt{2}-\frac{1}{2} by each term of -2\sqrt{2}-4.
\frac{1}{4}\times 2\left(-2\right)+\frac{1}{4}\sqrt{2}\left(-4\right)-\frac{1}{2}\left(-2\right)\sqrt{2}-\frac{1}{2}\left(-4\right)
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{2}{4}\left(-2\right)+\frac{1}{4}\sqrt{2}\left(-4\right)-\frac{1}{2}\left(-2\right)\sqrt{2}-\frac{1}{2}\left(-4\right)
Multiply \frac{1}{4} and 2 to get \frac{2}{4}.
\frac{1}{2}\left(-2\right)+\frac{1}{4}\sqrt{2}\left(-4\right)-\frac{1}{2}\left(-2\right)\sqrt{2}-\frac{1}{2}\left(-4\right)
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{-2}{2}+\frac{1}{4}\sqrt{2}\left(-4\right)-\frac{1}{2}\left(-2\right)\sqrt{2}-\frac{1}{2}\left(-4\right)
Multiply \frac{1}{2} and -2 to get \frac{-2}{2}.
-1+\frac{1}{4}\sqrt{2}\left(-4\right)-\frac{1}{2}\left(-2\right)\sqrt{2}-\frac{1}{2}\left(-4\right)
Divide -2 by 2 to get -1.
-1+\frac{-4}{4}\sqrt{2}-\frac{1}{2}\left(-2\right)\sqrt{2}-\frac{1}{2}\left(-4\right)
Multiply \frac{1}{4} and -4 to get \frac{-4}{4}.
-1-\sqrt{2}-\frac{1}{2}\left(-2\right)\sqrt{2}-\frac{1}{2}\left(-4\right)
Divide -4 by 4 to get -1.
-1-\sqrt{2}+\frac{-\left(-2\right)}{2}\sqrt{2}-\frac{1}{2}\left(-4\right)
Express -\frac{1}{2}\left(-2\right) as a single fraction.
-1-\sqrt{2}+\frac{2}{2}\sqrt{2}-\frac{1}{2}\left(-4\right)
Multiply -1 and -2 to get 2.
-1-\sqrt{2}+1\sqrt{2}-\frac{1}{2}\left(-4\right)
Divide 2 by 2 to get 1.
-1-\frac{1}{2}\left(-4\right)
Combine -\sqrt{2} and 1\sqrt{2} to get 0.
-1+\frac{-\left(-4\right)}{2}
Express -\frac{1}{2}\left(-4\right) as a single fraction.
-1+\frac{4}{2}
Multiply -1 and -4 to get 4.
-1+2
Divide 4 by 2 to get 2.
1
Add -1 and 2 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}