Evaluate
-\frac{44}{15}\approx -2.933333333
Factor
-\frac{44}{15} = -2\frac{14}{15} = -2.933333333333333
Share
Copied to clipboard
\frac{\frac{32}{3}+4}{-5}
The opposite of -4 is 4.
\frac{\frac{32}{3}+\frac{12}{3}}{-5}
Convert 4 to fraction \frac{12}{3}.
\frac{\frac{32+12}{3}}{-5}
Since \frac{32}{3} and \frac{12}{3} have the same denominator, add them by adding their numerators.
\frac{\frac{44}{3}}{-5}
Add 32 and 12 to get 44.
\frac{44}{3\left(-5\right)}
Express \frac{\frac{44}{3}}{-5} as a single fraction.
\frac{44}{-15}
Multiply 3 and -5 to get -15.
-\frac{44}{15}
Fraction \frac{44}{-15} can be rewritten as -\frac{44}{15} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}