Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{3}{y^{2}-y-6}}{\frac{2\left(y+2\right)}{\left(y-3\right)\left(y+2\right)}+\frac{4\left(y-3\right)}{\left(y-3\right)\left(y+2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y-3 and y+2 is \left(y-3\right)\left(y+2\right). Multiply \frac{2}{y-3} times \frac{y+2}{y+2}. Multiply \frac{4}{y+2} times \frac{y-3}{y-3}.
\frac{\frac{3}{y^{2}-y-6}}{\frac{2\left(y+2\right)+4\left(y-3\right)}{\left(y-3\right)\left(y+2\right)}}
Since \frac{2\left(y+2\right)}{\left(y-3\right)\left(y+2\right)} and \frac{4\left(y-3\right)}{\left(y-3\right)\left(y+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{3}{y^{2}-y-6}}{\frac{2y+4+4y-12}{\left(y-3\right)\left(y+2\right)}}
Do the multiplications in 2\left(y+2\right)+4\left(y-3\right).
\frac{\frac{3}{y^{2}-y-6}}{\frac{6y-8}{\left(y-3\right)\left(y+2\right)}}
Combine like terms in 2y+4+4y-12.
\frac{3\left(y-3\right)\left(y+2\right)}{\left(y^{2}-y-6\right)\left(6y-8\right)}
Divide \frac{3}{y^{2}-y-6} by \frac{6y-8}{\left(y-3\right)\left(y+2\right)} by multiplying \frac{3}{y^{2}-y-6} by the reciprocal of \frac{6y-8}{\left(y-3\right)\left(y+2\right)}.
\frac{3\left(y-3\right)\left(y+2\right)}{2\left(y-3\right)\left(3y-4\right)\left(y+2\right)}
Factor the expressions that are not already factored.
\frac{3}{2\left(3y-4\right)}
Cancel out \left(y-3\right)\left(y+2\right) in both numerator and denominator.
\frac{3}{6y-8}
Expand the expression.