Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{3\left(a-1\right)}{\left(a-1\right)\left(x-1\right)}-\frac{3\left(x-1\right)}{\left(a-1\right)\left(x-1\right)}}{x-a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-1 and a-1 is \left(a-1\right)\left(x-1\right). Multiply \frac{3}{x-1} times \frac{a-1}{a-1}. Multiply \frac{3}{a-1} times \frac{x-1}{x-1}.
\frac{\frac{3\left(a-1\right)-3\left(x-1\right)}{\left(a-1\right)\left(x-1\right)}}{x-a}
Since \frac{3\left(a-1\right)}{\left(a-1\right)\left(x-1\right)} and \frac{3\left(x-1\right)}{\left(a-1\right)\left(x-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3a-3-3x+3}{\left(a-1\right)\left(x-1\right)}}{x-a}
Do the multiplications in 3\left(a-1\right)-3\left(x-1\right).
\frac{\frac{3a-3x}{\left(a-1\right)\left(x-1\right)}}{x-a}
Combine like terms in 3a-3-3x+3.
\frac{3a-3x}{\left(a-1\right)\left(x-1\right)\left(x-a\right)}
Express \frac{\frac{3a-3x}{\left(a-1\right)\left(x-1\right)}}{x-a} as a single fraction.
\frac{3\left(-x+a\right)}{\left(a-1\right)\left(x-1\right)\left(x-a\right)}
Factor the expressions that are not already factored.
\frac{-3\left(x-a\right)}{\left(a-1\right)\left(x-1\right)\left(x-a\right)}
Extract the negative sign in a-x.
\frac{-3}{\left(a-1\right)\left(x-1\right)}
Cancel out x-a in both numerator and denominator.
\frac{-3}{ax-x-a+1}
Expand the expression.
\frac{\frac{3\left(a-1\right)}{\left(a-1\right)\left(x-1\right)}-\frac{3\left(x-1\right)}{\left(a-1\right)\left(x-1\right)}}{x-a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-1 and a-1 is \left(a-1\right)\left(x-1\right). Multiply \frac{3}{x-1} times \frac{a-1}{a-1}. Multiply \frac{3}{a-1} times \frac{x-1}{x-1}.
\frac{\frac{3\left(a-1\right)-3\left(x-1\right)}{\left(a-1\right)\left(x-1\right)}}{x-a}
Since \frac{3\left(a-1\right)}{\left(a-1\right)\left(x-1\right)} and \frac{3\left(x-1\right)}{\left(a-1\right)\left(x-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3a-3-3x+3}{\left(a-1\right)\left(x-1\right)}}{x-a}
Do the multiplications in 3\left(a-1\right)-3\left(x-1\right).
\frac{\frac{3a-3x}{\left(a-1\right)\left(x-1\right)}}{x-a}
Combine like terms in 3a-3-3x+3.
\frac{3a-3x}{\left(a-1\right)\left(x-1\right)\left(x-a\right)}
Express \frac{\frac{3a-3x}{\left(a-1\right)\left(x-1\right)}}{x-a} as a single fraction.
\frac{3\left(-x+a\right)}{\left(a-1\right)\left(x-1\right)\left(x-a\right)}
Factor the expressions that are not already factored.
\frac{-3\left(x-a\right)}{\left(a-1\right)\left(x-1\right)\left(x-a\right)}
Extract the negative sign in a-x.
\frac{-3}{\left(a-1\right)\left(x-1\right)}
Cancel out x-a in both numerator and denominator.
\frac{-3}{ax-x-a+1}
Expand the expression.