Evaluate
\frac{3y^{2}-4x}{y\left(4x+5y\right)}
Expand
\frac{3y^{2}-4x}{y\left(4x+5y\right)}
Share
Copied to clipboard
\frac{\frac{3y^{2}}{xy^{2}}-\frac{4x}{xy^{2}}}{\frac{4}{y}+\frac{5}{x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and y^{2} is xy^{2}. Multiply \frac{3}{x} times \frac{y^{2}}{y^{2}}. Multiply \frac{4}{y^{2}} times \frac{x}{x}.
\frac{\frac{3y^{2}-4x}{xy^{2}}}{\frac{4}{y}+\frac{5}{x}}
Since \frac{3y^{2}}{xy^{2}} and \frac{4x}{xy^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3y^{2}-4x}{xy^{2}}}{\frac{4x}{xy}+\frac{5y}{xy}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and x is xy. Multiply \frac{4}{y} times \frac{x}{x}. Multiply \frac{5}{x} times \frac{y}{y}.
\frac{\frac{3y^{2}-4x}{xy^{2}}}{\frac{4x+5y}{xy}}
Since \frac{4x}{xy} and \frac{5y}{xy} have the same denominator, add them by adding their numerators.
\frac{\left(3y^{2}-4x\right)xy}{xy^{2}\left(4x+5y\right)}
Divide \frac{3y^{2}-4x}{xy^{2}} by \frac{4x+5y}{xy} by multiplying \frac{3y^{2}-4x}{xy^{2}} by the reciprocal of \frac{4x+5y}{xy}.
\frac{-4x+3y^{2}}{y\left(4x+5y\right)}
Cancel out xy in both numerator and denominator.
\frac{-4x+3y^{2}}{4yx+5y^{2}}
Use the distributive property to multiply y by 4x+5y.
\frac{\frac{3y^{2}}{xy^{2}}-\frac{4x}{xy^{2}}}{\frac{4}{y}+\frac{5}{x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and y^{2} is xy^{2}. Multiply \frac{3}{x} times \frac{y^{2}}{y^{2}}. Multiply \frac{4}{y^{2}} times \frac{x}{x}.
\frac{\frac{3y^{2}-4x}{xy^{2}}}{\frac{4}{y}+\frac{5}{x}}
Since \frac{3y^{2}}{xy^{2}} and \frac{4x}{xy^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3y^{2}-4x}{xy^{2}}}{\frac{4x}{xy}+\frac{5y}{xy}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and x is xy. Multiply \frac{4}{y} times \frac{x}{x}. Multiply \frac{5}{x} times \frac{y}{y}.
\frac{\frac{3y^{2}-4x}{xy^{2}}}{\frac{4x+5y}{xy}}
Since \frac{4x}{xy} and \frac{5y}{xy} have the same denominator, add them by adding their numerators.
\frac{\left(3y^{2}-4x\right)xy}{xy^{2}\left(4x+5y\right)}
Divide \frac{3y^{2}-4x}{xy^{2}} by \frac{4x+5y}{xy} by multiplying \frac{3y^{2}-4x}{xy^{2}} by the reciprocal of \frac{4x+5y}{xy}.
\frac{-4x+3y^{2}}{y\left(4x+5y\right)}
Cancel out xy in both numerator and denominator.
\frac{-4x+3y^{2}}{4yx+5y^{2}}
Use the distributive property to multiply y by 4x+5y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}