Evaluate
\frac{3\left(d-6\right)\left(7d+4\right)}{4\left(5d-12\right)\left(d+5\right)}
Expand
\frac{3\left(7d^{2}-38d-24\right)}{4\left(5d-12\right)\left(d+5\right)}
Share
Copied to clipboard
\frac{\frac{3\left(5d-6\right)}{\left(5d-6\right)\left(d+5\right)}+\frac{6\left(d+5\right)}{\left(5d-6\right)\left(d+5\right)}}{\frac{3}{d-6}+\frac{5}{5d-6}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of d+5 and 5d-6 is \left(5d-6\right)\left(d+5\right). Multiply \frac{3}{d+5} times \frac{5d-6}{5d-6}. Multiply \frac{6}{5d-6} times \frac{d+5}{d+5}.
\frac{\frac{3\left(5d-6\right)+6\left(d+5\right)}{\left(5d-6\right)\left(d+5\right)}}{\frac{3}{d-6}+\frac{5}{5d-6}}
Since \frac{3\left(5d-6\right)}{\left(5d-6\right)\left(d+5\right)} and \frac{6\left(d+5\right)}{\left(5d-6\right)\left(d+5\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{15d-18+6d+30}{\left(5d-6\right)\left(d+5\right)}}{\frac{3}{d-6}+\frac{5}{5d-6}}
Do the multiplications in 3\left(5d-6\right)+6\left(d+5\right).
\frac{\frac{21d+12}{\left(5d-6\right)\left(d+5\right)}}{\frac{3}{d-6}+\frac{5}{5d-6}}
Combine like terms in 15d-18+6d+30.
\frac{\frac{21d+12}{\left(5d-6\right)\left(d+5\right)}}{\frac{3\left(5d-6\right)}{\left(d-6\right)\left(5d-6\right)}+\frac{5\left(d-6\right)}{\left(d-6\right)\left(5d-6\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of d-6 and 5d-6 is \left(d-6\right)\left(5d-6\right). Multiply \frac{3}{d-6} times \frac{5d-6}{5d-6}. Multiply \frac{5}{5d-6} times \frac{d-6}{d-6}.
\frac{\frac{21d+12}{\left(5d-6\right)\left(d+5\right)}}{\frac{3\left(5d-6\right)+5\left(d-6\right)}{\left(d-6\right)\left(5d-6\right)}}
Since \frac{3\left(5d-6\right)}{\left(d-6\right)\left(5d-6\right)} and \frac{5\left(d-6\right)}{\left(d-6\right)\left(5d-6\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{21d+12}{\left(5d-6\right)\left(d+5\right)}}{\frac{15d-18+5d-30}{\left(d-6\right)\left(5d-6\right)}}
Do the multiplications in 3\left(5d-6\right)+5\left(d-6\right).
\frac{\frac{21d+12}{\left(5d-6\right)\left(d+5\right)}}{\frac{20d-48}{\left(d-6\right)\left(5d-6\right)}}
Combine like terms in 15d-18+5d-30.
\frac{\left(21d+12\right)\left(d-6\right)\left(5d-6\right)}{\left(5d-6\right)\left(d+5\right)\left(20d-48\right)}
Divide \frac{21d+12}{\left(5d-6\right)\left(d+5\right)} by \frac{20d-48}{\left(d-6\right)\left(5d-6\right)} by multiplying \frac{21d+12}{\left(5d-6\right)\left(d+5\right)} by the reciprocal of \frac{20d-48}{\left(d-6\right)\left(5d-6\right)}.
\frac{\left(d-6\right)\left(21d+12\right)}{\left(20d-48\right)\left(d+5\right)}
Cancel out 5d-6 in both numerator and denominator.
\frac{21d^{2}+12d-126d-72}{\left(20d-48\right)\left(d+5\right)}
Apply the distributive property by multiplying each term of d-6 by each term of 21d+12.
\frac{21d^{2}-114d-72}{\left(20d-48\right)\left(d+5\right)}
Combine 12d and -126d to get -114d.
\frac{21d^{2}-114d-72}{20d^{2}+100d-48d-240}
Apply the distributive property by multiplying each term of 20d-48 by each term of d+5.
\frac{21d^{2}-114d-72}{20d^{2}+52d-240}
Combine 100d and -48d to get 52d.
\frac{\frac{3\left(5d-6\right)}{\left(5d-6\right)\left(d+5\right)}+\frac{6\left(d+5\right)}{\left(5d-6\right)\left(d+5\right)}}{\frac{3}{d-6}+\frac{5}{5d-6}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of d+5 and 5d-6 is \left(5d-6\right)\left(d+5\right). Multiply \frac{3}{d+5} times \frac{5d-6}{5d-6}. Multiply \frac{6}{5d-6} times \frac{d+5}{d+5}.
\frac{\frac{3\left(5d-6\right)+6\left(d+5\right)}{\left(5d-6\right)\left(d+5\right)}}{\frac{3}{d-6}+\frac{5}{5d-6}}
Since \frac{3\left(5d-6\right)}{\left(5d-6\right)\left(d+5\right)} and \frac{6\left(d+5\right)}{\left(5d-6\right)\left(d+5\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{15d-18+6d+30}{\left(5d-6\right)\left(d+5\right)}}{\frac{3}{d-6}+\frac{5}{5d-6}}
Do the multiplications in 3\left(5d-6\right)+6\left(d+5\right).
\frac{\frac{21d+12}{\left(5d-6\right)\left(d+5\right)}}{\frac{3}{d-6}+\frac{5}{5d-6}}
Combine like terms in 15d-18+6d+30.
\frac{\frac{21d+12}{\left(5d-6\right)\left(d+5\right)}}{\frac{3\left(5d-6\right)}{\left(d-6\right)\left(5d-6\right)}+\frac{5\left(d-6\right)}{\left(d-6\right)\left(5d-6\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of d-6 and 5d-6 is \left(d-6\right)\left(5d-6\right). Multiply \frac{3}{d-6} times \frac{5d-6}{5d-6}. Multiply \frac{5}{5d-6} times \frac{d-6}{d-6}.
\frac{\frac{21d+12}{\left(5d-6\right)\left(d+5\right)}}{\frac{3\left(5d-6\right)+5\left(d-6\right)}{\left(d-6\right)\left(5d-6\right)}}
Since \frac{3\left(5d-6\right)}{\left(d-6\right)\left(5d-6\right)} and \frac{5\left(d-6\right)}{\left(d-6\right)\left(5d-6\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{21d+12}{\left(5d-6\right)\left(d+5\right)}}{\frac{15d-18+5d-30}{\left(d-6\right)\left(5d-6\right)}}
Do the multiplications in 3\left(5d-6\right)+5\left(d-6\right).
\frac{\frac{21d+12}{\left(5d-6\right)\left(d+5\right)}}{\frac{20d-48}{\left(d-6\right)\left(5d-6\right)}}
Combine like terms in 15d-18+5d-30.
\frac{\left(21d+12\right)\left(d-6\right)\left(5d-6\right)}{\left(5d-6\right)\left(d+5\right)\left(20d-48\right)}
Divide \frac{21d+12}{\left(5d-6\right)\left(d+5\right)} by \frac{20d-48}{\left(d-6\right)\left(5d-6\right)} by multiplying \frac{21d+12}{\left(5d-6\right)\left(d+5\right)} by the reciprocal of \frac{20d-48}{\left(d-6\right)\left(5d-6\right)}.
\frac{\left(d-6\right)\left(21d+12\right)}{\left(20d-48\right)\left(d+5\right)}
Cancel out 5d-6 in both numerator and denominator.
\frac{21d^{2}+12d-126d-72}{\left(20d-48\right)\left(d+5\right)}
Apply the distributive property by multiplying each term of d-6 by each term of 21d+12.
\frac{21d^{2}-114d-72}{\left(20d-48\right)\left(d+5\right)}
Combine 12d and -126d to get -114d.
\frac{21d^{2}-114d-72}{20d^{2}+100d-48d-240}
Apply the distributive property by multiplying each term of 20d-48 by each term of d+5.
\frac{21d^{2}-114d-72}{20d^{2}+52d-240}
Combine 100d and -48d to get 52d.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}