Evaluate
1
Factor
1
Share
Copied to clipboard
\frac{\frac{3}{8}\left(-\frac{3}{4}\right)}{\frac{-3}{4}}+\frac{5}{8}
Fraction \frac{-3}{4} can be rewritten as -\frac{3}{4} by extracting the negative sign.
\frac{\frac{3\left(-3\right)}{8\times 4}}{\frac{-3}{4}}+\frac{5}{8}
Multiply \frac{3}{8} times -\frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{-9}{32}}{\frac{-3}{4}}+\frac{5}{8}
Do the multiplications in the fraction \frac{3\left(-3\right)}{8\times 4}.
\frac{-\frac{9}{32}}{\frac{-3}{4}}+\frac{5}{8}
Fraction \frac{-9}{32} can be rewritten as -\frac{9}{32} by extracting the negative sign.
\frac{-\frac{9}{32}}{-\frac{3}{4}}+\frac{5}{8}
Fraction \frac{-3}{4} can be rewritten as -\frac{3}{4} by extracting the negative sign.
-\frac{9}{32}\left(-\frac{4}{3}\right)+\frac{5}{8}
Divide -\frac{9}{32} by -\frac{3}{4} by multiplying -\frac{9}{32} by the reciprocal of -\frac{3}{4}.
\frac{-9\left(-4\right)}{32\times 3}+\frac{5}{8}
Multiply -\frac{9}{32} times -\frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{36}{96}+\frac{5}{8}
Do the multiplications in the fraction \frac{-9\left(-4\right)}{32\times 3}.
\frac{3}{8}+\frac{5}{8}
Reduce the fraction \frac{36}{96} to lowest terms by extracting and canceling out 12.
\frac{3+5}{8}
Since \frac{3}{8} and \frac{5}{8} have the same denominator, add them by adding their numerators.
\frac{8}{8}
Add 3 and 5 to get 8.
1
Divide 8 by 8 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}