\frac { \frac { 3 } { 5 } \cdot \frac { 5 } { 21 } + \frac { 15 } { 28 } : \frac { 5 } { 84 } } { 5 : 0,5 - 9,36 }
Evaluate
\frac{100}{7}\approx 14,285714286
Factor
\frac{2 ^ {2} \cdot 5 ^ {2}}{7} = 14\frac{2}{7} = 14.285714285714286
Share
Copied to clipboard
\frac{\frac{3\times 5}{5\times 21}+\frac{\frac{15}{28}}{\frac{5}{84}}}{\frac{5}{0,5}-9,36}
Multiply \frac{3}{5} times \frac{5}{21} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{3}{21}+\frac{\frac{15}{28}}{\frac{5}{84}}}{\frac{5}{0,5}-9,36}
Cancel out 5 in both numerator and denominator.
\frac{\frac{1}{7}+\frac{\frac{15}{28}}{\frac{5}{84}}}{\frac{5}{0,5}-9,36}
Reduce the fraction \frac{3}{21} to lowest terms by extracting and canceling out 3.
\frac{\frac{1}{7}+\frac{15}{28}\times \frac{84}{5}}{\frac{5}{0,5}-9,36}
Divide \frac{15}{28} by \frac{5}{84} by multiplying \frac{15}{28} by the reciprocal of \frac{5}{84}.
\frac{\frac{1}{7}+\frac{15\times 84}{28\times 5}}{\frac{5}{0,5}-9,36}
Multiply \frac{15}{28} times \frac{84}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{1}{7}+\frac{1260}{140}}{\frac{5}{0,5}-9,36}
Do the multiplications in the fraction \frac{15\times 84}{28\times 5}.
\frac{\frac{1}{7}+9}{\frac{5}{0,5}-9,36}
Divide 1260 by 140 to get 9.
\frac{\frac{1}{7}+\frac{63}{7}}{\frac{5}{0,5}-9,36}
Convert 9 to fraction \frac{63}{7}.
\frac{\frac{1+63}{7}}{\frac{5}{0,5}-9,36}
Since \frac{1}{7} and \frac{63}{7} have the same denominator, add them by adding their numerators.
\frac{\frac{64}{7}}{\frac{5}{0,5}-9,36}
Add 1 and 63 to get 64.
\frac{\frac{64}{7}}{\frac{50}{5}-9,36}
Expand \frac{5}{0,5} by multiplying both numerator and the denominator by 10.
\frac{\frac{64}{7}}{10-9,36}
Divide 50 by 5 to get 10.
\frac{\frac{64}{7}}{0,64}
Subtract 9,36 from 10 to get 0,64.
\frac{64}{7\times 0,64}
Express \frac{\frac{64}{7}}{0,64} as a single fraction.
\frac{64}{4,48}
Multiply 7 and 0,64 to get 4,48.
\frac{6400}{448}
Expand \frac{64}{4,48} by multiplying both numerator and the denominator by 100.
\frac{100}{7}
Reduce the fraction \frac{6400}{448} to lowest terms by extracting and canceling out 64.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}