Evaluate
\frac{2}{11}\approx 0.181818182
Factor
\frac{2}{11} = 0.18181818181818182
Share
Copied to clipboard
\frac{\frac{3}{4}-\frac{2}{4}}{1+\frac{3}{4}\times \frac{1}{2}}
Least common multiple of 4 and 2 is 4. Convert \frac{3}{4} and \frac{1}{2} to fractions with denominator 4.
\frac{\frac{3-2}{4}}{1+\frac{3}{4}\times \frac{1}{2}}
Since \frac{3}{4} and \frac{2}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{4}}{1+\frac{3}{4}\times \frac{1}{2}}
Subtract 2 from 3 to get 1.
\frac{\frac{1}{4}}{1+\frac{3\times 1}{4\times 2}}
Multiply \frac{3}{4} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{1}{4}}{1+\frac{3}{8}}
Do the multiplications in the fraction \frac{3\times 1}{4\times 2}.
\frac{\frac{1}{4}}{\frac{8}{8}+\frac{3}{8}}
Convert 1 to fraction \frac{8}{8}.
\frac{\frac{1}{4}}{\frac{8+3}{8}}
Since \frac{8}{8} and \frac{3}{8} have the same denominator, add them by adding their numerators.
\frac{\frac{1}{4}}{\frac{11}{8}}
Add 8 and 3 to get 11.
\frac{1}{4}\times \frac{8}{11}
Divide \frac{1}{4} by \frac{11}{8} by multiplying \frac{1}{4} by the reciprocal of \frac{11}{8}.
\frac{1\times 8}{4\times 11}
Multiply \frac{1}{4} times \frac{8}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{8}{44}
Do the multiplications in the fraction \frac{1\times 8}{4\times 11}.
\frac{2}{11}
Reduce the fraction \frac{8}{44} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}