Evaluate
\frac{43}{42}\approx 1.023809524
Factor
\frac{43}{2 \cdot 3 \cdot 7} = 1\frac{1}{42} = 1.0238095238095237
Share
Copied to clipboard
\frac{\frac{9}{12}+\frac{2}{12}}{1-\frac{3}{4}\times \frac{1}{6}}-\frac{\frac{3}{4}\times \left(\frac{1}{6}\right)^{2}}{1-\frac{3}{4}\times \frac{1}{6}}
Least common multiple of 4 and 6 is 12. Convert \frac{3}{4} and \frac{1}{6} to fractions with denominator 12.
\frac{\frac{9+2}{12}}{1-\frac{3}{4}\times \frac{1}{6}}-\frac{\frac{3}{4}\times \left(\frac{1}{6}\right)^{2}}{1-\frac{3}{4}\times \frac{1}{6}}
Since \frac{9}{12} and \frac{2}{12} have the same denominator, add them by adding their numerators.
\frac{\frac{11}{12}}{1-\frac{3}{4}\times \frac{1}{6}}-\frac{\frac{3}{4}\times \left(\frac{1}{6}\right)^{2}}{1-\frac{3}{4}\times \frac{1}{6}}
Add 9 and 2 to get 11.
\frac{\frac{11}{12}}{1-\frac{3\times 1}{4\times 6}}-\frac{\frac{3}{4}\times \left(\frac{1}{6}\right)^{2}}{1-\frac{3}{4}\times \frac{1}{6}}
Multiply \frac{3}{4} times \frac{1}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{11}{12}}{1-\frac{3}{24}}-\frac{\frac{3}{4}\times \left(\frac{1}{6}\right)^{2}}{1-\frac{3}{4}\times \frac{1}{6}}
Do the multiplications in the fraction \frac{3\times 1}{4\times 6}.
\frac{\frac{11}{12}}{1-\frac{1}{8}}-\frac{\frac{3}{4}\times \left(\frac{1}{6}\right)^{2}}{1-\frac{3}{4}\times \frac{1}{6}}
Reduce the fraction \frac{3}{24} to lowest terms by extracting and canceling out 3.
\frac{\frac{11}{12}}{\frac{8}{8}-\frac{1}{8}}-\frac{\frac{3}{4}\times \left(\frac{1}{6}\right)^{2}}{1-\frac{3}{4}\times \frac{1}{6}}
Convert 1 to fraction \frac{8}{8}.
\frac{\frac{11}{12}}{\frac{8-1}{8}}-\frac{\frac{3}{4}\times \left(\frac{1}{6}\right)^{2}}{1-\frac{3}{4}\times \frac{1}{6}}
Since \frac{8}{8} and \frac{1}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{11}{12}}{\frac{7}{8}}-\frac{\frac{3}{4}\times \left(\frac{1}{6}\right)^{2}}{1-\frac{3}{4}\times \frac{1}{6}}
Subtract 1 from 8 to get 7.
\frac{11}{12}\times \frac{8}{7}-\frac{\frac{3}{4}\times \left(\frac{1}{6}\right)^{2}}{1-\frac{3}{4}\times \frac{1}{6}}
Divide \frac{11}{12} by \frac{7}{8} by multiplying \frac{11}{12} by the reciprocal of \frac{7}{8}.
\frac{11\times 8}{12\times 7}-\frac{\frac{3}{4}\times \left(\frac{1}{6}\right)^{2}}{1-\frac{3}{4}\times \frac{1}{6}}
Multiply \frac{11}{12} times \frac{8}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{88}{84}-\frac{\frac{3}{4}\times \left(\frac{1}{6}\right)^{2}}{1-\frac{3}{4}\times \frac{1}{6}}
Do the multiplications in the fraction \frac{11\times 8}{12\times 7}.
\frac{22}{21}-\frac{\frac{3}{4}\times \left(\frac{1}{6}\right)^{2}}{1-\frac{3}{4}\times \frac{1}{6}}
Reduce the fraction \frac{88}{84} to lowest terms by extracting and canceling out 4.
\frac{22}{21}-\frac{\frac{3}{4}\times \frac{1}{36}}{1-\frac{3}{4}\times \frac{1}{6}}
Calculate \frac{1}{6} to the power of 2 and get \frac{1}{36}.
\frac{22}{21}-\frac{\frac{3\times 1}{4\times 36}}{1-\frac{3}{4}\times \frac{1}{6}}
Multiply \frac{3}{4} times \frac{1}{36} by multiplying numerator times numerator and denominator times denominator.
\frac{22}{21}-\frac{\frac{3}{144}}{1-\frac{3}{4}\times \frac{1}{6}}
Do the multiplications in the fraction \frac{3\times 1}{4\times 36}.
\frac{22}{21}-\frac{\frac{1}{48}}{1-\frac{3}{4}\times \frac{1}{6}}
Reduce the fraction \frac{3}{144} to lowest terms by extracting and canceling out 3.
\frac{22}{21}-\frac{\frac{1}{48}}{1-\frac{3\times 1}{4\times 6}}
Multiply \frac{3}{4} times \frac{1}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{22}{21}-\frac{\frac{1}{48}}{1-\frac{3}{24}}
Do the multiplications in the fraction \frac{3\times 1}{4\times 6}.
\frac{22}{21}-\frac{\frac{1}{48}}{1-\frac{1}{8}}
Reduce the fraction \frac{3}{24} to lowest terms by extracting and canceling out 3.
\frac{22}{21}-\frac{\frac{1}{48}}{\frac{8}{8}-\frac{1}{8}}
Convert 1 to fraction \frac{8}{8}.
\frac{22}{21}-\frac{\frac{1}{48}}{\frac{8-1}{8}}
Since \frac{8}{8} and \frac{1}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{22}{21}-\frac{\frac{1}{48}}{\frac{7}{8}}
Subtract 1 from 8 to get 7.
\frac{22}{21}-\frac{1}{48}\times \frac{8}{7}
Divide \frac{1}{48} by \frac{7}{8} by multiplying \frac{1}{48} by the reciprocal of \frac{7}{8}.
\frac{22}{21}-\frac{1\times 8}{48\times 7}
Multiply \frac{1}{48} times \frac{8}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{22}{21}-\frac{8}{336}
Do the multiplications in the fraction \frac{1\times 8}{48\times 7}.
\frac{22}{21}-\frac{1}{42}
Reduce the fraction \frac{8}{336} to lowest terms by extracting and canceling out 8.
\frac{44}{42}-\frac{1}{42}
Least common multiple of 21 and 42 is 42. Convert \frac{22}{21} and \frac{1}{42} to fractions with denominator 42.
\frac{44-1}{42}
Since \frac{44}{42} and \frac{1}{42} have the same denominator, subtract them by subtracting their numerators.
\frac{43}{42}
Subtract 1 from 44 to get 43.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}