Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2n^{2}-2n-12\right)\left(3n^{2}+6n-9\right)}{\left(12-6n-6n^{2}\right)\left(n^{2}-6n+9\right)}
Divide \frac{2n^{2}-2n-12}{12-6n-6n^{2}} by \frac{n^{2}-6n+9}{3n^{2}+6n-9} by multiplying \frac{2n^{2}-2n-12}{12-6n-6n^{2}} by the reciprocal of \frac{n^{2}-6n+9}{3n^{2}+6n-9}.
\frac{2\times 3\left(n-3\right)\left(n-1\right)\left(n+2\right)\left(n+3\right)}{6\left(n+2\right)\left(-n+1\right)\left(n-3\right)^{2}}
Factor the expressions that are not already factored.
\frac{-2\times 3\left(n-3\right)\left(n+2\right)\left(n+3\right)\left(-n+1\right)}{6\left(n+2\right)\left(-n+1\right)\left(n-3\right)^{2}}
Extract the negative sign in -1+n.
\frac{-\left(n+3\right)}{n-3}
Cancel out 2\times 3\left(n-3\right)\left(n+2\right)\left(-n+1\right) in both numerator and denominator.
\frac{-n-3}{n-3}
Expand the expression.
\frac{\left(2n^{2}-2n-12\right)\left(3n^{2}+6n-9\right)}{\left(12-6n-6n^{2}\right)\left(n^{2}-6n+9\right)}
Divide \frac{2n^{2}-2n-12}{12-6n-6n^{2}} by \frac{n^{2}-6n+9}{3n^{2}+6n-9} by multiplying \frac{2n^{2}-2n-12}{12-6n-6n^{2}} by the reciprocal of \frac{n^{2}-6n+9}{3n^{2}+6n-9}.
\frac{2\times 3\left(n-3\right)\left(n-1\right)\left(n+2\right)\left(n+3\right)}{6\left(n+2\right)\left(-n+1\right)\left(n-3\right)^{2}}
Factor the expressions that are not already factored.
\frac{-2\times 3\left(n-3\right)\left(n+2\right)\left(n+3\right)\left(-n+1\right)}{6\left(n+2\right)\left(-n+1\right)\left(n-3\right)^{2}}
Extract the negative sign in -1+n.
\frac{-\left(n+3\right)}{n-3}
Cancel out 2\times 3\left(n-3\right)\left(n+2\right)\left(-n+1\right) in both numerator and denominator.
\frac{-n-3}{n-3}
Expand the expression.