Evaluate
4
Factor
2^{2}
Share
Copied to clipboard
\frac{\frac{\frac{6}{3}-\frac{1}{3}}{\frac{3}{4}}+\frac{1+\frac{2}{3}}{\frac{1}{4}}}{1-\frac{1}{2}}\times \frac{9}{40}
Convert 2 to fraction \frac{6}{3}.
\frac{\frac{\frac{6-1}{3}}{\frac{3}{4}}+\frac{1+\frac{2}{3}}{\frac{1}{4}}}{1-\frac{1}{2}}\times \frac{9}{40}
Since \frac{6}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\frac{5}{3}}{\frac{3}{4}}+\frac{1+\frac{2}{3}}{\frac{1}{4}}}{1-\frac{1}{2}}\times \frac{9}{40}
Subtract 1 from 6 to get 5.
\frac{\frac{5}{3}\times \frac{4}{3}+\frac{1+\frac{2}{3}}{\frac{1}{4}}}{1-\frac{1}{2}}\times \frac{9}{40}
Divide \frac{5}{3} by \frac{3}{4} by multiplying \frac{5}{3} by the reciprocal of \frac{3}{4}.
\frac{\frac{5\times 4}{3\times 3}+\frac{1+\frac{2}{3}}{\frac{1}{4}}}{1-\frac{1}{2}}\times \frac{9}{40}
Multiply \frac{5}{3} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{20}{9}+\frac{1+\frac{2}{3}}{\frac{1}{4}}}{1-\frac{1}{2}}\times \frac{9}{40}
Do the multiplications in the fraction \frac{5\times 4}{3\times 3}.
\frac{\frac{20}{9}+\frac{\frac{3}{3}+\frac{2}{3}}{\frac{1}{4}}}{1-\frac{1}{2}}\times \frac{9}{40}
Convert 1 to fraction \frac{3}{3}.
\frac{\frac{20}{9}+\frac{\frac{3+2}{3}}{\frac{1}{4}}}{1-\frac{1}{2}}\times \frac{9}{40}
Since \frac{3}{3} and \frac{2}{3} have the same denominator, add them by adding their numerators.
\frac{\frac{20}{9}+\frac{\frac{5}{3}}{\frac{1}{4}}}{1-\frac{1}{2}}\times \frac{9}{40}
Add 3 and 2 to get 5.
\frac{\frac{20}{9}+\frac{5}{3}\times 4}{1-\frac{1}{2}}\times \frac{9}{40}
Divide \frac{5}{3} by \frac{1}{4} by multiplying \frac{5}{3} by the reciprocal of \frac{1}{4}.
\frac{\frac{20}{9}+\frac{5\times 4}{3}}{1-\frac{1}{2}}\times \frac{9}{40}
Express \frac{5}{3}\times 4 as a single fraction.
\frac{\frac{20}{9}+\frac{20}{3}}{1-\frac{1}{2}}\times \frac{9}{40}
Multiply 5 and 4 to get 20.
\frac{\frac{20}{9}+\frac{60}{9}}{1-\frac{1}{2}}\times \frac{9}{40}
Least common multiple of 9 and 3 is 9. Convert \frac{20}{9} and \frac{20}{3} to fractions with denominator 9.
\frac{\frac{20+60}{9}}{1-\frac{1}{2}}\times \frac{9}{40}
Since \frac{20}{9} and \frac{60}{9} have the same denominator, add them by adding their numerators.
\frac{\frac{80}{9}}{1-\frac{1}{2}}\times \frac{9}{40}
Add 20 and 60 to get 80.
\frac{\frac{80}{9}}{\frac{2}{2}-\frac{1}{2}}\times \frac{9}{40}
Convert 1 to fraction \frac{2}{2}.
\frac{\frac{80}{9}}{\frac{2-1}{2}}\times \frac{9}{40}
Since \frac{2}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{80}{9}}{\frac{1}{2}}\times \frac{9}{40}
Subtract 1 from 2 to get 1.
\frac{80}{9}\times 2\times \frac{9}{40}
Divide \frac{80}{9} by \frac{1}{2} by multiplying \frac{80}{9} by the reciprocal of \frac{1}{2}.
\frac{80\times 2}{9}\times \frac{9}{40}
Express \frac{80}{9}\times 2 as a single fraction.
\frac{160}{9}\times \frac{9}{40}
Multiply 80 and 2 to get 160.
\frac{160\times 9}{9\times 40}
Multiply \frac{160}{9} times \frac{9}{40} by multiplying numerator times numerator and denominator times denominator.
\frac{160}{40}
Cancel out 9 in both numerator and denominator.
4
Divide 160 by 40 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}