Evaluate
\frac{24}{5}=4.8
Factor
\frac{2 ^ {3} \cdot 3}{5} = 4\frac{4}{5} = 4.8
Share
Copied to clipboard
\frac{1}{\frac{4}{2}}\times \frac{\frac{12}{2}}{\frac{5}{8}}
Divide 2 by 2 to get 1.
\frac{2}{4}\times \frac{\frac{12}{2}}{\frac{5}{8}}
Divide 1 by \frac{4}{2} by multiplying 1 by the reciprocal of \frac{4}{2}.
\frac{1}{2}\times \frac{\frac{12}{2}}{\frac{5}{8}}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{2}\times \frac{12\times 8}{2\times 5}
Divide \frac{12}{2} by \frac{5}{8} by multiplying \frac{12}{2} by the reciprocal of \frac{5}{8}.
\frac{1}{2}\times \frac{6\times 8}{5}
Cancel out 2 in both numerator and denominator.
\frac{1}{2}\times \frac{48}{5}
Multiply 6 and 8 to get 48.
\frac{1\times 48}{2\times 5}
Multiply \frac{1}{2} times \frac{48}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{48}{10}
Do the multiplications in the fraction \frac{1\times 48}{2\times 5}.
\frac{24}{5}
Reduce the fraction \frac{48}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}