Evaluate
-\frac{3}{y+6}
Expand
-\frac{3}{y+6}
Graph
Quiz
Polynomial
5 problems similar to:
\frac { \frac { 18 } { y + 4 } - 3 } { y - \frac { 12 } { y + 4 } }
Share
Copied to clipboard
\frac{\frac{18}{y+4}-\frac{3\left(y+4\right)}{y+4}}{y-\frac{12}{y+4}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{y+4}{y+4}.
\frac{\frac{18-3\left(y+4\right)}{y+4}}{y-\frac{12}{y+4}}
Since \frac{18}{y+4} and \frac{3\left(y+4\right)}{y+4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{18-3y-12}{y+4}}{y-\frac{12}{y+4}}
Do the multiplications in 18-3\left(y+4\right).
\frac{\frac{6-3y}{y+4}}{y-\frac{12}{y+4}}
Combine like terms in 18-3y-12.
\frac{\frac{6-3y}{y+4}}{\frac{y\left(y+4\right)}{y+4}-\frac{12}{y+4}}
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{y+4}{y+4}.
\frac{\frac{6-3y}{y+4}}{\frac{y\left(y+4\right)-12}{y+4}}
Since \frac{y\left(y+4\right)}{y+4} and \frac{12}{y+4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{6-3y}{y+4}}{\frac{y^{2}+4y-12}{y+4}}
Do the multiplications in y\left(y+4\right)-12.
\frac{\left(6-3y\right)\left(y+4\right)}{\left(y+4\right)\left(y^{2}+4y-12\right)}
Divide \frac{6-3y}{y+4} by \frac{y^{2}+4y-12}{y+4} by multiplying \frac{6-3y}{y+4} by the reciprocal of \frac{y^{2}+4y-12}{y+4}.
\frac{-3y+6}{y^{2}+4y-12}
Cancel out y+4 in both numerator and denominator.
\frac{3\left(-y+2\right)}{\left(y-2\right)\left(y+6\right)}
Factor the expressions that are not already factored.
\frac{-3\left(y-2\right)}{\left(y-2\right)\left(y+6\right)}
Extract the negative sign in 2-y.
\frac{-3}{y+6}
Cancel out y-2 in both numerator and denominator.
\frac{\frac{18}{y+4}-\frac{3\left(y+4\right)}{y+4}}{y-\frac{12}{y+4}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{y+4}{y+4}.
\frac{\frac{18-3\left(y+4\right)}{y+4}}{y-\frac{12}{y+4}}
Since \frac{18}{y+4} and \frac{3\left(y+4\right)}{y+4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{18-3y-12}{y+4}}{y-\frac{12}{y+4}}
Do the multiplications in 18-3\left(y+4\right).
\frac{\frac{6-3y}{y+4}}{y-\frac{12}{y+4}}
Combine like terms in 18-3y-12.
\frac{\frac{6-3y}{y+4}}{\frac{y\left(y+4\right)}{y+4}-\frac{12}{y+4}}
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{y+4}{y+4}.
\frac{\frac{6-3y}{y+4}}{\frac{y\left(y+4\right)-12}{y+4}}
Since \frac{y\left(y+4\right)}{y+4} and \frac{12}{y+4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{6-3y}{y+4}}{\frac{y^{2}+4y-12}{y+4}}
Do the multiplications in y\left(y+4\right)-12.
\frac{\left(6-3y\right)\left(y+4\right)}{\left(y+4\right)\left(y^{2}+4y-12\right)}
Divide \frac{6-3y}{y+4} by \frac{y^{2}+4y-12}{y+4} by multiplying \frac{6-3y}{y+4} by the reciprocal of \frac{y^{2}+4y-12}{y+4}.
\frac{-3y+6}{y^{2}+4y-12}
Cancel out y+4 in both numerator and denominator.
\frac{3\left(-y+2\right)}{\left(y-2\right)\left(y+6\right)}
Factor the expressions that are not already factored.
\frac{-3\left(y-2\right)}{\left(y-2\right)\left(y+6\right)}
Extract the negative sign in 2-y.
\frac{-3}{y+6}
Cancel out y-2 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}