Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{18}{y+4}-\frac{3\left(y+4\right)}{y+4}}{y-\frac{12}{y+4}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{y+4}{y+4}.
\frac{\frac{18-3\left(y+4\right)}{y+4}}{y-\frac{12}{y+4}}
Since \frac{18}{y+4} and \frac{3\left(y+4\right)}{y+4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{18-3y-12}{y+4}}{y-\frac{12}{y+4}}
Do the multiplications in 18-3\left(y+4\right).
\frac{\frac{6-3y}{y+4}}{y-\frac{12}{y+4}}
Combine like terms in 18-3y-12.
\frac{\frac{6-3y}{y+4}}{\frac{y\left(y+4\right)}{y+4}-\frac{12}{y+4}}
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{y+4}{y+4}.
\frac{\frac{6-3y}{y+4}}{\frac{y\left(y+4\right)-12}{y+4}}
Since \frac{y\left(y+4\right)}{y+4} and \frac{12}{y+4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{6-3y}{y+4}}{\frac{y^{2}+4y-12}{y+4}}
Do the multiplications in y\left(y+4\right)-12.
\frac{\left(6-3y\right)\left(y+4\right)}{\left(y+4\right)\left(y^{2}+4y-12\right)}
Divide \frac{6-3y}{y+4} by \frac{y^{2}+4y-12}{y+4} by multiplying \frac{6-3y}{y+4} by the reciprocal of \frac{y^{2}+4y-12}{y+4}.
\frac{-3y+6}{y^{2}+4y-12}
Cancel out y+4 in both numerator and denominator.
\frac{3\left(-y+2\right)}{\left(y-2\right)\left(y+6\right)}
Factor the expressions that are not already factored.
\frac{-3\left(y-2\right)}{\left(y-2\right)\left(y+6\right)}
Extract the negative sign in 2-y.
\frac{-3}{y+6}
Cancel out y-2 in both numerator and denominator.
\frac{\frac{18}{y+4}-\frac{3\left(y+4\right)}{y+4}}{y-\frac{12}{y+4}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{y+4}{y+4}.
\frac{\frac{18-3\left(y+4\right)}{y+4}}{y-\frac{12}{y+4}}
Since \frac{18}{y+4} and \frac{3\left(y+4\right)}{y+4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{18-3y-12}{y+4}}{y-\frac{12}{y+4}}
Do the multiplications in 18-3\left(y+4\right).
\frac{\frac{6-3y}{y+4}}{y-\frac{12}{y+4}}
Combine like terms in 18-3y-12.
\frac{\frac{6-3y}{y+4}}{\frac{y\left(y+4\right)}{y+4}-\frac{12}{y+4}}
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{y+4}{y+4}.
\frac{\frac{6-3y}{y+4}}{\frac{y\left(y+4\right)-12}{y+4}}
Since \frac{y\left(y+4\right)}{y+4} and \frac{12}{y+4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{6-3y}{y+4}}{\frac{y^{2}+4y-12}{y+4}}
Do the multiplications in y\left(y+4\right)-12.
\frac{\left(6-3y\right)\left(y+4\right)}{\left(y+4\right)\left(y^{2}+4y-12\right)}
Divide \frac{6-3y}{y+4} by \frac{y^{2}+4y-12}{y+4} by multiplying \frac{6-3y}{y+4} by the reciprocal of \frac{y^{2}+4y-12}{y+4}.
\frac{-3y+6}{y^{2}+4y-12}
Cancel out y+4 in both numerator and denominator.
\frac{3\left(-y+2\right)}{\left(y-2\right)\left(y+6\right)}
Factor the expressions that are not already factored.
\frac{-3\left(y-2\right)}{\left(y-2\right)\left(y+6\right)}
Extract the negative sign in 2-y.
\frac{-3}{y+6}
Cancel out y-2 in both numerator and denominator.