Evaluate
x+y
Expand
x+y
Share
Copied to clipboard
\frac{\frac{1}{x\left(x-y\right)}-\frac{1}{y\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
Factor x^{2}-xy. Factor y^{2}-xy.
\frac{\frac{-y}{xy\left(-x+y\right)}-\frac{x}{xy\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-y\right) and y\left(-x+y\right) is xy\left(-x+y\right). Multiply \frac{1}{x\left(x-y\right)} times \frac{-y}{-y}. Multiply \frac{1}{y\left(-x+y\right)} times \frac{x}{x}.
\frac{\frac{-y-x}{xy\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
Since \frac{-y}{xy\left(-x+y\right)} and \frac{x}{xy\left(-x+y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(-y-x\right)\left(x^{2}y-y^{2}x\right)}{xy\left(-x+y\right)}
Divide \frac{-y-x}{xy\left(-x+y\right)} by \frac{1}{x^{2}y-y^{2}x} by multiplying \frac{-y-x}{xy\left(-x+y\right)} by the reciprocal of \frac{1}{x^{2}y-y^{2}x}.
\frac{xy\left(x-y\right)\left(-x-y\right)}{xy\left(-x+y\right)}
Factor the expressions that are not already factored.
\frac{-xy\left(-x+y\right)\left(-x-y\right)}{xy\left(-x+y\right)}
Extract the negative sign in x-y.
-\left(-x-y\right)
Cancel out xy\left(-x+y\right) in both numerator and denominator.
x+y
Expand the expression.
\frac{\frac{1}{x\left(x-y\right)}-\frac{1}{y\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
Factor x^{2}-xy. Factor y^{2}-xy.
\frac{\frac{-y}{xy\left(-x+y\right)}-\frac{x}{xy\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-y\right) and y\left(-x+y\right) is xy\left(-x+y\right). Multiply \frac{1}{x\left(x-y\right)} times \frac{-y}{-y}. Multiply \frac{1}{y\left(-x+y\right)} times \frac{x}{x}.
\frac{\frac{-y-x}{xy\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
Since \frac{-y}{xy\left(-x+y\right)} and \frac{x}{xy\left(-x+y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(-y-x\right)\left(x^{2}y-y^{2}x\right)}{xy\left(-x+y\right)}
Divide \frac{-y-x}{xy\left(-x+y\right)} by \frac{1}{x^{2}y-y^{2}x} by multiplying \frac{-y-x}{xy\left(-x+y\right)} by the reciprocal of \frac{1}{x^{2}y-y^{2}x}.
\frac{xy\left(x-y\right)\left(-x-y\right)}{xy\left(-x+y\right)}
Factor the expressions that are not already factored.
\frac{-xy\left(-x+y\right)\left(-x-y\right)}{xy\left(-x+y\right)}
Extract the negative sign in x-y.
-\left(-x-y\right)
Cancel out xy\left(-x+y\right) in both numerator and denominator.
x+y
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}