Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{1}{x\left(x-y\right)}-\frac{1}{y\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
Factor x^{2}-xy. Factor y^{2}-xy.
\frac{\frac{-y}{xy\left(-x+y\right)}-\frac{x}{xy\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-y\right) and y\left(-x+y\right) is xy\left(-x+y\right). Multiply \frac{1}{x\left(x-y\right)} times \frac{-y}{-y}. Multiply \frac{1}{y\left(-x+y\right)} times \frac{x}{x}.
\frac{\frac{-y-x}{xy\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
Since \frac{-y}{xy\left(-x+y\right)} and \frac{x}{xy\left(-x+y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(-y-x\right)\left(x^{2}y-y^{2}x\right)}{xy\left(-x+y\right)}
Divide \frac{-y-x}{xy\left(-x+y\right)} by \frac{1}{x^{2}y-y^{2}x} by multiplying \frac{-y-x}{xy\left(-x+y\right)} by the reciprocal of \frac{1}{x^{2}y-y^{2}x}.
\frac{xy\left(x-y\right)\left(-x-y\right)}{xy\left(-x+y\right)}
Factor the expressions that are not already factored.
\frac{-xy\left(-x+y\right)\left(-x-y\right)}{xy\left(-x+y\right)}
Extract the negative sign in x-y.
-\left(-x-y\right)
Cancel out xy\left(-x+y\right) in both numerator and denominator.
x+y
Expand the expression.
\frac{\frac{1}{x\left(x-y\right)}-\frac{1}{y\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
Factor x^{2}-xy. Factor y^{2}-xy.
\frac{\frac{-y}{xy\left(-x+y\right)}-\frac{x}{xy\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-y\right) and y\left(-x+y\right) is xy\left(-x+y\right). Multiply \frac{1}{x\left(x-y\right)} times \frac{-y}{-y}. Multiply \frac{1}{y\left(-x+y\right)} times \frac{x}{x}.
\frac{\frac{-y-x}{xy\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
Since \frac{-y}{xy\left(-x+y\right)} and \frac{x}{xy\left(-x+y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(-y-x\right)\left(x^{2}y-y^{2}x\right)}{xy\left(-x+y\right)}
Divide \frac{-y-x}{xy\left(-x+y\right)} by \frac{1}{x^{2}y-y^{2}x} by multiplying \frac{-y-x}{xy\left(-x+y\right)} by the reciprocal of \frac{1}{x^{2}y-y^{2}x}.
\frac{xy\left(x-y\right)\left(-x-y\right)}{xy\left(-x+y\right)}
Factor the expressions that are not already factored.
\frac{-xy\left(-x+y\right)\left(-x-y\right)}{xy\left(-x+y\right)}
Extract the negative sign in x-y.
-\left(-x-y\right)
Cancel out xy\left(-x+y\right) in both numerator and denominator.
x+y
Expand the expression.