Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{x+2}{\left(x+1\right)\left(x+2\right)}+\frac{x+1}{\left(x+1\right)\left(x+2\right)}}{\frac{1}{x+1}-\frac{1}{x+2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and x+2 is \left(x+1\right)\left(x+2\right). Multiply \frac{1}{x+1} times \frac{x+2}{x+2}. Multiply \frac{1}{x+2} times \frac{x+1}{x+1}.
\frac{\frac{x+2+x+1}{\left(x+1\right)\left(x+2\right)}}{\frac{1}{x+1}-\frac{1}{x+2}}
Since \frac{x+2}{\left(x+1\right)\left(x+2\right)} and \frac{x+1}{\left(x+1\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{2x+3}{\left(x+1\right)\left(x+2\right)}}{\frac{1}{x+1}-\frac{1}{x+2}}
Combine like terms in x+2+x+1.
\frac{\frac{2x+3}{\left(x+1\right)\left(x+2\right)}}{\frac{x+2}{\left(x+1\right)\left(x+2\right)}-\frac{x+1}{\left(x+1\right)\left(x+2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and x+2 is \left(x+1\right)\left(x+2\right). Multiply \frac{1}{x+1} times \frac{x+2}{x+2}. Multiply \frac{1}{x+2} times \frac{x+1}{x+1}.
\frac{\frac{2x+3}{\left(x+1\right)\left(x+2\right)}}{\frac{x+2-\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}}
Since \frac{x+2}{\left(x+1\right)\left(x+2\right)} and \frac{x+1}{\left(x+1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x+3}{\left(x+1\right)\left(x+2\right)}}{\frac{x+2-x-1}{\left(x+1\right)\left(x+2\right)}}
Do the multiplications in x+2-\left(x+1\right).
\frac{\frac{2x+3}{\left(x+1\right)\left(x+2\right)}}{\frac{1}{\left(x+1\right)\left(x+2\right)}}
Combine like terms in x+2-x-1.
\frac{\left(2x+3\right)\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}
Divide \frac{2x+3}{\left(x+1\right)\left(x+2\right)} by \frac{1}{\left(x+1\right)\left(x+2\right)} by multiplying \frac{2x+3}{\left(x+1\right)\left(x+2\right)} by the reciprocal of \frac{1}{\left(x+1\right)\left(x+2\right)}.
2x+3
Cancel out \left(x+1\right)\left(x+2\right) in both numerator and denominator.
\frac{\frac{x+2}{\left(x+1\right)\left(x+2\right)}+\frac{x+1}{\left(x+1\right)\left(x+2\right)}}{\frac{1}{x+1}-\frac{1}{x+2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and x+2 is \left(x+1\right)\left(x+2\right). Multiply \frac{1}{x+1} times \frac{x+2}{x+2}. Multiply \frac{1}{x+2} times \frac{x+1}{x+1}.
\frac{\frac{x+2+x+1}{\left(x+1\right)\left(x+2\right)}}{\frac{1}{x+1}-\frac{1}{x+2}}
Since \frac{x+2}{\left(x+1\right)\left(x+2\right)} and \frac{x+1}{\left(x+1\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{2x+3}{\left(x+1\right)\left(x+2\right)}}{\frac{1}{x+1}-\frac{1}{x+2}}
Combine like terms in x+2+x+1.
\frac{\frac{2x+3}{\left(x+1\right)\left(x+2\right)}}{\frac{x+2}{\left(x+1\right)\left(x+2\right)}-\frac{x+1}{\left(x+1\right)\left(x+2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and x+2 is \left(x+1\right)\left(x+2\right). Multiply \frac{1}{x+1} times \frac{x+2}{x+2}. Multiply \frac{1}{x+2} times \frac{x+1}{x+1}.
\frac{\frac{2x+3}{\left(x+1\right)\left(x+2\right)}}{\frac{x+2-\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}}
Since \frac{x+2}{\left(x+1\right)\left(x+2\right)} and \frac{x+1}{\left(x+1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x+3}{\left(x+1\right)\left(x+2\right)}}{\frac{x+2-x-1}{\left(x+1\right)\left(x+2\right)}}
Do the multiplications in x+2-\left(x+1\right).
\frac{\frac{2x+3}{\left(x+1\right)\left(x+2\right)}}{\frac{1}{\left(x+1\right)\left(x+2\right)}}
Combine like terms in x+2-x-1.
\frac{\left(2x+3\right)\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}
Divide \frac{2x+3}{\left(x+1\right)\left(x+2\right)} by \frac{1}{\left(x+1\right)\left(x+2\right)} by multiplying \frac{2x+3}{\left(x+1\right)\left(x+2\right)} by the reciprocal of \frac{1}{\left(x+1\right)\left(x+2\right)}.
2x+3
Cancel out \left(x+1\right)\left(x+2\right) in both numerator and denominator.