Evaluate
n^{3}
Expand
n^{3}
Share
Copied to clipboard
\frac{\frac{1}{n}-\frac{1}{n^{2}}}{\frac{1}{n^{4}}}+\frac{\frac{n}{\frac{1}{n}}}{1}
Divide n^{2} by n^{2} to get 1.
\frac{\frac{n}{n^{2}}-\frac{1}{n^{2}}}{\frac{1}{n^{4}}}+\frac{\frac{n}{\frac{1}{n}}}{1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of n and n^{2} is n^{2}. Multiply \frac{1}{n} times \frac{n}{n}.
\frac{\frac{n-1}{n^{2}}}{\frac{1}{n^{4}}}+\frac{\frac{n}{\frac{1}{n}}}{1}
Since \frac{n}{n^{2}} and \frac{1}{n^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(n-1\right)n^{4}}{n^{2}}+\frac{\frac{n}{\frac{1}{n}}}{1}
Divide \frac{n-1}{n^{2}} by \frac{1}{n^{4}} by multiplying \frac{n-1}{n^{2}} by the reciprocal of \frac{1}{n^{4}}.
\left(n-1\right)n^{2}+\frac{\frac{n}{\frac{1}{n}}}{1}
Cancel out n^{2} in both numerator and denominator.
\left(n-1\right)n^{2}+\frac{nn}{1}
Divide n by \frac{1}{n} by multiplying n by the reciprocal of \frac{1}{n}.
\left(n-1\right)n^{2}+\frac{n^{2}}{1}
Multiply n and n to get n^{2}.
\left(n-1\right)n^{2}+n^{2}
Anything divided by one gives itself.
n^{3}-n^{2}+n^{2}
Use the distributive property to multiply n-1 by n^{2}.
n^{3}
Combine -n^{2} and n^{2} to get 0.
\frac{\frac{1}{n}-\frac{1}{n^{2}}}{\frac{1}{n^{4}}}+\frac{\frac{n}{\frac{1}{n}}}{1}
Divide n^{2} by n^{2} to get 1.
\frac{\frac{n}{n^{2}}-\frac{1}{n^{2}}}{\frac{1}{n^{4}}}+\frac{\frac{n}{\frac{1}{n}}}{1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of n and n^{2} is n^{2}. Multiply \frac{1}{n} times \frac{n}{n}.
\frac{\frac{n-1}{n^{2}}}{\frac{1}{n^{4}}}+\frac{\frac{n}{\frac{1}{n}}}{1}
Since \frac{n}{n^{2}} and \frac{1}{n^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(n-1\right)n^{4}}{n^{2}}+\frac{\frac{n}{\frac{1}{n}}}{1}
Divide \frac{n-1}{n^{2}} by \frac{1}{n^{4}} by multiplying \frac{n-1}{n^{2}} by the reciprocal of \frac{1}{n^{4}}.
\left(n-1\right)n^{2}+\frac{\frac{n}{\frac{1}{n}}}{1}
Cancel out n^{2} in both numerator and denominator.
\left(n-1\right)n^{2}+\frac{nn}{1}
Divide n by \frac{1}{n} by multiplying n by the reciprocal of \frac{1}{n}.
\left(n-1\right)n^{2}+\frac{n^{2}}{1}
Multiply n and n to get n^{2}.
\left(n-1\right)n^{2}+n^{2}
Anything divided by one gives itself.
n^{3}-n^{2}+n^{2}
Use the distributive property to multiply n-1 by n^{2}.
n^{3}
Combine -n^{2} and n^{2} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}