Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{b+c}{\left(b+c\right)\left(b-c\right)}+\frac{b-c}{\left(b+c\right)\left(b-c\right)}}{\frac{1}{b-c}-\frac{1}{b+c}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b-c and b+c is \left(b+c\right)\left(b-c\right). Multiply \frac{1}{b-c} times \frac{b+c}{b+c}. Multiply \frac{1}{b+c} times \frac{b-c}{b-c}.
\frac{\frac{b+c+b-c}{\left(b+c\right)\left(b-c\right)}}{\frac{1}{b-c}-\frac{1}{b+c}}
Since \frac{b+c}{\left(b+c\right)\left(b-c\right)} and \frac{b-c}{\left(b+c\right)\left(b-c\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{2b}{\left(b+c\right)\left(b-c\right)}}{\frac{1}{b-c}-\frac{1}{b+c}}
Combine like terms in b+c+b-c.
\frac{\frac{2b}{\left(b+c\right)\left(b-c\right)}}{\frac{b+c}{\left(b+c\right)\left(b-c\right)}-\frac{b-c}{\left(b+c\right)\left(b-c\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b-c and b+c is \left(b+c\right)\left(b-c\right). Multiply \frac{1}{b-c} times \frac{b+c}{b+c}. Multiply \frac{1}{b+c} times \frac{b-c}{b-c}.
\frac{\frac{2b}{\left(b+c\right)\left(b-c\right)}}{\frac{b+c-\left(b-c\right)}{\left(b+c\right)\left(b-c\right)}}
Since \frac{b+c}{\left(b+c\right)\left(b-c\right)} and \frac{b-c}{\left(b+c\right)\left(b-c\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2b}{\left(b+c\right)\left(b-c\right)}}{\frac{b+c-b+c}{\left(b+c\right)\left(b-c\right)}}
Do the multiplications in b+c-\left(b-c\right).
\frac{\frac{2b}{\left(b+c\right)\left(b-c\right)}}{\frac{2c}{\left(b+c\right)\left(b-c\right)}}
Combine like terms in b+c-b+c.
\frac{2b\left(b+c\right)\left(b-c\right)}{\left(b+c\right)\left(b-c\right)\times 2c}
Divide \frac{2b}{\left(b+c\right)\left(b-c\right)} by \frac{2c}{\left(b+c\right)\left(b-c\right)} by multiplying \frac{2b}{\left(b+c\right)\left(b-c\right)} by the reciprocal of \frac{2c}{\left(b+c\right)\left(b-c\right)}.
\frac{b}{c}
Cancel out 2\left(b+c\right)\left(b-c\right) in both numerator and denominator.
\frac{\frac{b+c}{\left(b+c\right)\left(b-c\right)}+\frac{b-c}{\left(b+c\right)\left(b-c\right)}}{\frac{1}{b-c}-\frac{1}{b+c}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b-c and b+c is \left(b+c\right)\left(b-c\right). Multiply \frac{1}{b-c} times \frac{b+c}{b+c}. Multiply \frac{1}{b+c} times \frac{b-c}{b-c}.
\frac{\frac{b+c+b-c}{\left(b+c\right)\left(b-c\right)}}{\frac{1}{b-c}-\frac{1}{b+c}}
Since \frac{b+c}{\left(b+c\right)\left(b-c\right)} and \frac{b-c}{\left(b+c\right)\left(b-c\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{2b}{\left(b+c\right)\left(b-c\right)}}{\frac{1}{b-c}-\frac{1}{b+c}}
Combine like terms in b+c+b-c.
\frac{\frac{2b}{\left(b+c\right)\left(b-c\right)}}{\frac{b+c}{\left(b+c\right)\left(b-c\right)}-\frac{b-c}{\left(b+c\right)\left(b-c\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b-c and b+c is \left(b+c\right)\left(b-c\right). Multiply \frac{1}{b-c} times \frac{b+c}{b+c}. Multiply \frac{1}{b+c} times \frac{b-c}{b-c}.
\frac{\frac{2b}{\left(b+c\right)\left(b-c\right)}}{\frac{b+c-\left(b-c\right)}{\left(b+c\right)\left(b-c\right)}}
Since \frac{b+c}{\left(b+c\right)\left(b-c\right)} and \frac{b-c}{\left(b+c\right)\left(b-c\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2b}{\left(b+c\right)\left(b-c\right)}}{\frac{b+c-b+c}{\left(b+c\right)\left(b-c\right)}}
Do the multiplications in b+c-\left(b-c\right).
\frac{\frac{2b}{\left(b+c\right)\left(b-c\right)}}{\frac{2c}{\left(b+c\right)\left(b-c\right)}}
Combine like terms in b+c-b+c.
\frac{2b\left(b+c\right)\left(b-c\right)}{\left(b+c\right)\left(b-c\right)\times 2c}
Divide \frac{2b}{\left(b+c\right)\left(b-c\right)} by \frac{2c}{\left(b+c\right)\left(b-c\right)} by multiplying \frac{2b}{\left(b+c\right)\left(b-c\right)} by the reciprocal of \frac{2c}{\left(b+c\right)\left(b-c\right)}.
\frac{b}{c}
Cancel out 2\left(b+c\right)\left(b-c\right) in both numerator and denominator.