Evaluate
1-a
Expand
1-a
Share
Copied to clipboard
\frac{\frac{1}{a}-\frac{aa}{a}}{\frac{1}{a}+1}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a}{a}.
\frac{\frac{1-aa}{a}}{\frac{1}{a}+1}
Since \frac{1}{a} and \frac{aa}{a} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1-a^{2}}{a}}{\frac{1}{a}+1}
Do the multiplications in 1-aa.
\frac{\frac{1-a^{2}}{a}}{\frac{1}{a}+\frac{a}{a}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a}{a}.
\frac{\frac{1-a^{2}}{a}}{\frac{1+a}{a}}
Since \frac{1}{a} and \frac{a}{a} have the same denominator, add them by adding their numerators.
\frac{\left(1-a^{2}\right)a}{a\left(1+a\right)}
Divide \frac{1-a^{2}}{a} by \frac{1+a}{a} by multiplying \frac{1-a^{2}}{a} by the reciprocal of \frac{1+a}{a}.
\frac{-a^{2}+1}{a+1}
Cancel out a in both numerator and denominator.
\frac{\left(a-1\right)\left(-a-1\right)}{a+1}
Factor the expressions that are not already factored.
\frac{-\left(a-1\right)\left(a+1\right)}{a+1}
Extract the negative sign in -1-a.
-\left(a-1\right)
Cancel out a+1 in both numerator and denominator.
-a+1
Expand the expression.
\frac{\frac{1}{a}-\frac{aa}{a}}{\frac{1}{a}+1}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a}{a}.
\frac{\frac{1-aa}{a}}{\frac{1}{a}+1}
Since \frac{1}{a} and \frac{aa}{a} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1-a^{2}}{a}}{\frac{1}{a}+1}
Do the multiplications in 1-aa.
\frac{\frac{1-a^{2}}{a}}{\frac{1}{a}+\frac{a}{a}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a}{a}.
\frac{\frac{1-a^{2}}{a}}{\frac{1+a}{a}}
Since \frac{1}{a} and \frac{a}{a} have the same denominator, add them by adding their numerators.
\frac{\left(1-a^{2}\right)a}{a\left(1+a\right)}
Divide \frac{1-a^{2}}{a} by \frac{1+a}{a} by multiplying \frac{1-a^{2}}{a} by the reciprocal of \frac{1+a}{a}.
\frac{-a^{2}+1}{a+1}
Cancel out a in both numerator and denominator.
\frac{\left(a-1\right)\left(-a-1\right)}{a+1}
Factor the expressions that are not already factored.
\frac{-\left(a-1\right)\left(a+1\right)}{a+1}
Extract the negative sign in -1-a.
-\left(a-1\right)
Cancel out a+1 in both numerator and denominator.
-a+1
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}