Evaluate
\frac{b-a}{ab-1}
Expand
\frac{b-a}{ab-1}
Share
Copied to clipboard
\frac{\frac{b}{ab}-\frac{a}{ab}}{1-\frac{1}{a}\times \frac{1}{b}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a and b is ab. Multiply \frac{1}{a} times \frac{b}{b}. Multiply \frac{1}{b} times \frac{a}{a}.
\frac{\frac{b-a}{ab}}{1-\frac{1}{a}\times \frac{1}{b}}
Since \frac{b}{ab} and \frac{a}{ab} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{b-a}{ab}}{1-\frac{1}{ab}}
Multiply \frac{1}{a} times \frac{1}{b} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{b-a}{ab}}{\frac{ab}{ab}-\frac{1}{ab}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{ab}{ab}.
\frac{\frac{b-a}{ab}}{\frac{ab-1}{ab}}
Since \frac{ab}{ab} and \frac{1}{ab} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(b-a\right)ab}{ab\left(ab-1\right)}
Divide \frac{b-a}{ab} by \frac{ab-1}{ab} by multiplying \frac{b-a}{ab} by the reciprocal of \frac{ab-1}{ab}.
\frac{-a+b}{ab-1}
Cancel out ab in both numerator and denominator.
\frac{\frac{b}{ab}-\frac{a}{ab}}{1-\frac{1}{a}\times \frac{1}{b}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a and b is ab. Multiply \frac{1}{a} times \frac{b}{b}. Multiply \frac{1}{b} times \frac{a}{a}.
\frac{\frac{b-a}{ab}}{1-\frac{1}{a}\times \frac{1}{b}}
Since \frac{b}{ab} and \frac{a}{ab} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{b-a}{ab}}{1-\frac{1}{ab}}
Multiply \frac{1}{a} times \frac{1}{b} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{b-a}{ab}}{\frac{ab}{ab}-\frac{1}{ab}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{ab}{ab}.
\frac{\frac{b-a}{ab}}{\frac{ab-1}{ab}}
Since \frac{ab}{ab} and \frac{1}{ab} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(b-a\right)ab}{ab\left(ab-1\right)}
Divide \frac{b-a}{ab} by \frac{ab-1}{ab} by multiplying \frac{b-a}{ab} by the reciprocal of \frac{ab-1}{ab}.
\frac{-a+b}{ab-1}
Cancel out ab in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}