Evaluate
\frac{9}{11}\approx 0.818181818
Factor
\frac{3 ^ {2}}{11} = 0.8181818181818182
Share
Copied to clipboard
\frac{\frac{1}{8}+\frac{2}{8}}{\frac{1}{8}+\frac{1}{3}}
Least common multiple of 8 and 4 is 8. Convert \frac{1}{8} and \frac{1}{4} to fractions with denominator 8.
\frac{\frac{1+2}{8}}{\frac{1}{8}+\frac{1}{3}}
Since \frac{1}{8} and \frac{2}{8} have the same denominator, add them by adding their numerators.
\frac{\frac{3}{8}}{\frac{1}{8}+\frac{1}{3}}
Add 1 and 2 to get 3.
\frac{\frac{3}{8}}{\frac{3}{24}+\frac{8}{24}}
Least common multiple of 8 and 3 is 24. Convert \frac{1}{8} and \frac{1}{3} to fractions with denominator 24.
\frac{\frac{3}{8}}{\frac{3+8}{24}}
Since \frac{3}{24} and \frac{8}{24} have the same denominator, add them by adding their numerators.
\frac{\frac{3}{8}}{\frac{11}{24}}
Add 3 and 8 to get 11.
\frac{3}{8}\times \frac{24}{11}
Divide \frac{3}{8} by \frac{11}{24} by multiplying \frac{3}{8} by the reciprocal of \frac{11}{24}.
\frac{3\times 24}{8\times 11}
Multiply \frac{3}{8} times \frac{24}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{72}{88}
Do the multiplications in the fraction \frac{3\times 24}{8\times 11}.
\frac{9}{11}
Reduce the fraction \frac{72}{88} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}