Evaluate
\frac{5x}{x-25}
Expand
\frac{5x}{x-25}
Graph
Share
Copied to clipboard
\frac{\frac{x}{5x}+\frac{5\times 5}{5x}}{\frac{1}{25}-\frac{25}{x^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and x is 5x. Multiply \frac{1}{5} times \frac{x}{x}. Multiply \frac{5}{x} times \frac{5}{5}.
\frac{\frac{x+5\times 5}{5x}}{\frac{1}{25}-\frac{25}{x^{2}}}
Since \frac{x}{5x} and \frac{5\times 5}{5x} have the same denominator, add them by adding their numerators.
\frac{\frac{x+25}{5x}}{\frac{1}{25}-\frac{25}{x^{2}}}
Do the multiplications in x+5\times 5.
\frac{\frac{x+25}{5x}}{\frac{x^{2}}{25x^{2}}-\frac{25\times 25}{25x^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 25 and x^{2} is 25x^{2}. Multiply \frac{1}{25} times \frac{x^{2}}{x^{2}}. Multiply \frac{25}{x^{2}} times \frac{25}{25}.
\frac{\frac{x+25}{5x}}{\frac{x^{2}-25\times 25}{25x^{2}}}
Since \frac{x^{2}}{25x^{2}} and \frac{25\times 25}{25x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x+25}{5x}}{\frac{x^{2}-625}{25x^{2}}}
Do the multiplications in x^{2}-25\times 25.
\frac{\left(x+25\right)\times 25x^{2}}{5x\left(x^{2}-625\right)}
Divide \frac{x+25}{5x} by \frac{x^{2}-625}{25x^{2}} by multiplying \frac{x+25}{5x} by the reciprocal of \frac{x^{2}-625}{25x^{2}}.
\frac{5x\left(x+25\right)}{x^{2}-625}
Cancel out 5x in both numerator and denominator.
\frac{5x\left(x+25\right)}{\left(x-25\right)\left(x+25\right)}
Factor the expressions that are not already factored.
\frac{5x}{x-25}
Cancel out x+25 in both numerator and denominator.
\frac{\frac{x}{5x}+\frac{5\times 5}{5x}}{\frac{1}{25}-\frac{25}{x^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and x is 5x. Multiply \frac{1}{5} times \frac{x}{x}. Multiply \frac{5}{x} times \frac{5}{5}.
\frac{\frac{x+5\times 5}{5x}}{\frac{1}{25}-\frac{25}{x^{2}}}
Since \frac{x}{5x} and \frac{5\times 5}{5x} have the same denominator, add them by adding their numerators.
\frac{\frac{x+25}{5x}}{\frac{1}{25}-\frac{25}{x^{2}}}
Do the multiplications in x+5\times 5.
\frac{\frac{x+25}{5x}}{\frac{x^{2}}{25x^{2}}-\frac{25\times 25}{25x^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 25 and x^{2} is 25x^{2}. Multiply \frac{1}{25} times \frac{x^{2}}{x^{2}}. Multiply \frac{25}{x^{2}} times \frac{25}{25}.
\frac{\frac{x+25}{5x}}{\frac{x^{2}-25\times 25}{25x^{2}}}
Since \frac{x^{2}}{25x^{2}} and \frac{25\times 25}{25x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x+25}{5x}}{\frac{x^{2}-625}{25x^{2}}}
Do the multiplications in x^{2}-25\times 25.
\frac{\left(x+25\right)\times 25x^{2}}{5x\left(x^{2}-625\right)}
Divide \frac{x+25}{5x} by \frac{x^{2}-625}{25x^{2}} by multiplying \frac{x+25}{5x} by the reciprocal of \frac{x^{2}-625}{25x^{2}}.
\frac{5x\left(x+25\right)}{x^{2}-625}
Cancel out 5x in both numerator and denominator.
\frac{5x\left(x+25\right)}{\left(x-25\right)\left(x+25\right)}
Factor the expressions that are not already factored.
\frac{5x}{x-25}
Cancel out x+25 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}